-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1375, 'abvar_counts': [1375, 2930125, 4755796375, 7984359145125, 13426146538750000, 22564498962826385125, 37929142411144198831375, 63758970594010546201945125, 107178927917199835286761711375, 180167782082809772797913620000000], 'abvar_counts_str': '1375 2930125 4755796375 7984359145125 13426146538750000 22564498962826385125 37929142411144198831375 63758970594010546201945125 107178927917199835286761711375 180167782082809772797913620000000 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.21116324953688, 0.527129909541623], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 33, 'curve_counts': [33, 1743, 69003, 2825563, 115886298, 4750316583, 194753838543, 7984917674803, 327381925076613, 13422659245067598], 'curve_counts_str': '33 1743 69003 2825563 115886298 4750316583 194753838543 7984917674803 327381925076613 13422659245067598 ', 'curves': ['y^2=36*x^5+40', 'y^2=27*x^6+14*x^5+25*x^4+30*x^3+9*x^2+30*x+34', 'y^2=6*x^6+15*x^5+37*x^4+6*x^3+30*x^2+7*x+24', 'y^2=40*x^6+24*x^5+11*x^4+33*x^3+2*x^2+19*x+13', 'y^2=17*x^6+12*x^5+5*x^4+14*x^3+29*x^2+25*x+19', 'y^2=35*x^6+8*x^5+26*x^4+8*x^3+16*x^2+27*x+17', 'y^2=32*x^6+32*x^5+12*x^4+2*x^2+30*x+4', 'y^2=26*x^6+36*x^5+15*x^4+13*x^3+17*x+22', 'y^2=22*x^6+2*x^5+28*x^4+32*x^3+3*x^2+37*x+7', 'y^2=26*x^5+14*x^4+22*x^2+26*x+22', 'y^2=18*x^6+34*x^5+16*x^4+26*x^3+37*x^2+26*x+23', 'y^2=35*x^6+17*x^5+31*x^4+20*x^3+22*x^2+15*x+29', 'y^2=40*x^6+16*x^5+40*x^4+33*x^3+11*x^2+2*x+37', 'y^2=15*x^6+8*x^5+27*x^4+34*x^3+39*x^2+19*x+38', 'y^2=29*x^6+39*x^5+33*x^4+15*x^3+38*x^2+32*x+28', 'y^2=29*x^6+11*x^5+12*x^4+35*x^3+33*x^2+10*x+29', 'y^2=9*x^6+19*x^5+13*x^4+39*x^3+4*x^2+36*x+9', 'y^2=34*x^6+17*x^5+36*x^4+19*x^3+7*x^2+40*x+30', 'y^2=22*x^6+19*x^5+23*x^4+36*x^3+17*x^2+6*x+33', 'y^2=15*x^6+10*x^5+20*x^4+22*x^3+20*x^2+26*x+13', 'y^2=13*x^6+35*x^4+15*x^3+18*x^2+26*x+30', 'y^2=23*x^6+11*x^5+4*x^4+26*x^3+20*x^2+11*x+29', 'y^2=23*x^6+20*x^5+7*x^4+16*x^3+8*x^2+16*x+27', 'y^2=33*x^6+17*x^5+24*x^4+17*x^2+21*x+5', 'y^2=9*x^6+8*x^5+3*x^4+8*x^3+28*x^2+24*x+29', 'y^2=39*x^6+27*x^5+x^4+12*x^3+10*x+36', 'y^2=30*x^6+9*x^5+24*x^3+11*x^2+37*x+25', 'y^2=9*x^6+6*x^5+15*x^4+5*x^3+22*x^2+14*x+20', 'y^2=6*x^6+27*x^5+31*x^4+17*x^3+23*x^2+13*x+13', 'y^2=25*x^6+20*x^5+30*x^4+2*x^3+37*x^2+25*x+12', 'y^2=7*x^6+35*x^5+8*x^4+20*x^3+37*x^2+13*x+30', 'y^2=14*x^6+12*x^5+19*x^4+23*x^3+26*x+27', 'y^2=27*x^6+25*x^5+20*x^4+3*x^3+32*x^2+9*x+40', 'y^2=30*x^6+17*x^5+13*x^4+16*x^3+10*x^2+39*x+5', 'y^2=34*x^6+33*x^5+16*x^4+33*x^3+11*x^2+27*x+35', 'y^2=35*x^6+8*x^5+39*x^4+3*x^3+16*x^2+8*x+35', 'y^2=3*x^6+8*x^5+17*x^4+18*x^3+32*x^2+3', 'y^2=9*x^6+19*x^5+37*x^4+10*x^3+13*x^2+34*x+14', 'y^2=16*x^6+4*x^5+31*x^4+36*x^3+7*x^2+32*x+3', 'y^2=34*x^6+16*x^5+20*x^4+15*x^3+39*x^2+26*x+3', 'y^2=21*x^6+18*x^5+27*x^4+6*x^3+11*x^2+8*x+25', 'y^2=32*x^6+2*x^5+6*x^4+12*x^3+3*x', 'y^2=23*x^6+12*x^5+34*x^4+19*x^3+5*x^2+33*x+12', 'y^2=4*x^6+9*x^5+34*x^4+38*x^3+21*x^2+20*x+11', 'y^2=20*x^6+18*x^5+27*x^4+8*x^3+23*x^2+28*x+28', 'y^2=34*x^6+3*x^5+24*x^4+20*x^3+30*x^2+34', 'y^2=35*x^6+5*x^5+11*x^4+8*x^3+29*x+9', 'y^2=5*x^6+12*x^5+6*x^4+9*x^3+24*x^2+20', 'y^2=14*x^6+32*x^5+17*x^4+9*x^3+36*x^2+9*x+27', 'y^2=13*x^6+16*x^5+14*x^4+26*x^3+29*x^2+28*x+4', 'y^2=13*x^6+11*x^5+31*x^4+35*x^3+40*x^2+19*x+21', 'y^2=23*x^6+34*x^5+33*x^4+36*x^2+7*x+12', 'y^2=25*x^6+x^5+4*x^4+21*x^3+39*x^2+8*x+31', 'y^2=29*x^6+36*x^5+14*x^4+31*x^3+16*x^2+39*x+21', 'y^2=19*x^6+24*x^5+26*x^3+22*x^2+29*x+15', 'y^2=16*x^6+4*x^5+4*x^4+19*x^3+10*x^2+16*x+40', 'y^2=24*x^6+2*x^5+12*x^4+5*x^3+25*x^2+4*x+20', 'y^2=35*x^6+5*x^5+33*x^4+24*x^3+2*x^2+x', 'y^2=11*x^6+2*x^5+35*x^4+37*x^3+22*x^2+6*x+15', 'y^2=26*x^6+18*x^5+18*x^4+23*x^3+11*x^2+19*x+19', 'y^2=33*x^6+21*x^5+34*x^4+18*x^3+26*x^2+11*x+27', 'y^2=11*x^6+31*x^4+23*x^2+24*x+17', 'y^2=29*x^6+8*x^5+32*x^4+21*x^3+3*x^2+6*x+35', 'y^2=28*x^6+39*x^5+29*x^3+17*x^2+17*x+26', 'y^2=18*x^6+7*x^5+23*x^4+13*x^3+26*x^2+24*x+36', 'y^2=10*x^6+33*x^5+6*x^4+14*x^3+2*x^2+7*x+22', 'y^2=27*x^6+18*x^5+33*x^4+21*x^3+25*x^2+10*x+12', 'y^2=27*x^6+17*x^5+40*x^4+19*x^3+23*x^2+18*x+15', 'y^2=18*x^6+36*x^5+37*x^4+33*x^3+x^2+27*x+6'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['4T1'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T1'], 'geometric_number_fields': ['4.0.125.1'], 'geometric_splitting_field': '4.0.125.1', 'geometric_splitting_polynomials': [[1, -1, 1, -1, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 69, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 69, 'label': '2.41.aj_ct', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 10, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.125.1'], 'p': 41, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 11, 1, 10], [1, 11, 2, 10]], 'poly': [1, -9, 71, -369, 1681], 'poly_str': '1 -9 71 -369 1681 ', 'primitive_models': [], 'principal_polarization_count': 69, 'q': 41, 'real_poly': [1, -9, -11], 'simple_distinct': ['2.41.aj_ct'], 'simple_factors': ['2.41.aj_ctA'], 'simple_multiplicities': [1], 'singular_primes': ['5,2*V-12', '3,13*F+8*V-60'], 'size': 91, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.125.1', 'splitting_polynomials': [[1, -1, 1, -1, 1]], 'twist_count': 10, 'twists': [['2.41.j_ct', '2.1681.cj_cpt', 2], ['2.41.at_gp', '2.115856201.bsno_bjjvrzy', 5], ['2.41.b_acr', '2.115856201.bsno_bjjvrzy', 5], ['2.41.l_eh', '2.115856201.bsno_bjjvrzy', 5], ['2.41.q_ew', '2.115856201.bsno_bjjvrzy', 5], ['2.41.aq_ew', '2.13422659310152401.afmlbhs_absyqitxjybmo', 10], ['2.41.al_eh', '2.13422659310152401.afmlbhs_absyqitxjybmo', 10], ['2.41.ab_acr', '2.13422659310152401.afmlbhs_absyqitxjybmo', 10], ['2.41.t_gp', '2.13422659310152401.afmlbhs_absyqitxjybmo', 10]], 'weak_equivalence_count': 10, 'zfv_index': 1125, 'zfv_index_factorization': [[3, 2], [5, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 50, 'zfv_plus_index': 5, 'zfv_plus_index_factorization': [[5, 1]], 'zfv_plus_norm': 10125, 'zfv_singular_count': 4, 'zfv_singular_primes': ['5,2*V-12', '3,13*F+8*V-60']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.41.aj_ct', 'extension_degree': 1, 'extension_label': '2.41.aj_ct', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.125.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.41.aj_ct', 'galois_group': '4T1', 'places': [['16', '1', '0', '0'], ['37', '1', '0', '0'], ['10', '1', '0', '0'], ['18', '1', '0', '0']]}