-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1501, 'abvar_counts': [1501, 2024849, 2560609936, 3511916329241, 4808273789714461, 6582664271481552896, 9012121087551042340981, 12337531771268971466145449, 16890049714416681166301330704, 23122482988788230900117816890449], 'abvar_counts_str': '1501 2024849 2560609936 3511916329241 4808273789714461 6582664271481552896 9012121087551042340981 12337531771268971466145449 16890049714416681166301330704 23122482988788230900117816890449 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.407870959290109, 0.648507163428489], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 40, 'curve_counts': [40, 1476, 50554, 1873860, 69339480, 2565614262, 94932506968, 3512485107204, 129961708276978, 4808584231446436], 'curve_counts_str': '40 1476 50554 1873860 69339480 2565614262 94932506968 3512485107204 129961708276978 4808584231446436 ', 'curves': ['y^2=26*x^6+20*x^5+13*x^4+29*x^3+30*x^2+30*x+4', 'y^2=29*x^6+24*x^5+32*x^4+6*x^3+20*x^2+14*x+14', 'y^2=11*x^6+13*x^5+14*x^4+19*x^3+32*x^2+19*x+16', 'y^2=31*x^6+31*x^5+15*x^4+17*x^3+4*x^2+32*x+20', 'y^2=31*x^6+28*x^5+8*x^4+6*x^3+2*x^2+26*x+11', 'y^2=17*x^6+31*x^5+16*x^4+29*x^3+4*x^2+30*x+2', 'y^2=10*x^6+18*x^5+28*x^4+15*x^3+17*x^2+35*x+1', 'y^2=6*x^6+4*x^5+18*x^4+9*x^3+4*x^2+16*x+9', 'y^2=31*x^6+2*x^5+24*x^4+11*x^3+35*x^2+13*x+5', 'y^2=2*x^6+4*x^5+21*x^4+12*x^3+26*x^2+34*x+31', 'y^2=32*x^6+35*x^5+9*x^4+36*x^3+18*x^2+7*x+34', 'y^2=8*x^6+24*x^4+29*x^3+4*x^2+19*x+32', 'y^2=11*x^6+24*x^5+8*x^4+23*x^3+7*x^2+21*x+3', 'y^2=29*x^6+22*x^5+19*x^4+13*x^3+2*x^2+9*x+19', 'y^2=33*x^6+23*x^5+29*x^4+17*x^3+33*x^2+28*x+26', 'y^2=32*x^6+3*x^5+31*x^4+4*x^3+34*x^2+26*x+19', 'y^2=26*x^6+32*x^5+23*x^4+24*x^3+16*x^2+24*x+11', 'y^2=x^6+34*x^5+18*x^4+3*x^3+8*x^2+34*x+10', 'y^2=21*x^6+21*x^5+31*x^4+21*x^3+6*x^2+18*x+16', 'y^2=20*x^6+26*x^5+32*x^4+36*x^3+2*x^2+20*x+30', 'y^2=4*x^6+26*x^5+9*x^4+8*x^3+24*x^2+28*x+18', 'y^2=8*x^6+5*x^5+7*x^4+3*x^3+23*x^2+17*x+9', 'y^2=13*x^6+19*x^5+4*x^4+21*x^3+19*x^2+11*x+36', 'y^2=x^6+22*x^5+21*x^4+28*x^2+7*x+3', 'y^2=13*x^6+16*x^5+14*x^4+17*x^2+33*x+4', 'y^2=4*x^6+34*x^5+3*x^4+24*x^3+x^2+21*x+13', 'y^2=20*x^6+30*x^5+17*x^4+28*x^3+32*x^2+1', 'y^2=35*x^6+18*x^5+36*x^4+19*x^3+24*x^2+36*x+16', 'y^2=5*x^6+25*x^4+13*x^3+8*x^2+27*x+3', 'y^2=8*x^6+30*x^5+29*x^4+15*x^3+4*x^2+24*x+33', 'y^2=2*x^6+6*x^5+28*x^4+14*x^3+19*x^2+11*x+10', 'y^2=27*x^6+6*x^5+24*x^4+36*x^3+2*x^2+2*x+2', 'y^2=13*x^6+21*x^5+14*x^4+27*x^3+29*x^2+10*x+1', 'y^2=4*x^6+16*x^5+2*x^4+28*x^3+11*x^2+x+34', 'y^2=29*x^6+31*x^5+20*x^4+4*x^3+13*x^2+6*x+33', 'y^2=34*x^6+33*x^5+16*x^4+4*x^3+32*x^2+7*x+24', 'y^2=6*x^6+32*x^5+7*x^4+10*x^3+29*x+17', 'y^2=18*x^6+27*x^5+33*x^4+18*x^3+31*x^2+27*x+23', 'y^2=27*x^6+32*x^5+20*x^4+35*x^3+32*x^2+10*x+6', 'y^2=2*x^6+25*x^5+21*x^4+23*x^3+34*x^2+20*x+33', 'y^2=2*x^6+36*x^5+15*x^4+34*x^3+31*x^2+35*x+6', 'y^2=26*x^6+17*x^5+31*x^4+28*x^3+36*x^2+23*x+28', 'y^2=28*x^6+28*x^5+32*x^3+9*x^2+30*x+25', 'y^2=27*x^6+30*x^5+26*x^4+23*x^3+24*x^2+9*x+23', 'y^2=31*x^6+33*x^5+19*x^4+18*x^3+15*x^2+26*x+10', 'y^2=35*x^6+28*x^5+34*x^4+2*x^3+20*x^2+31*x+19', 'y^2=30*x^6+14*x^5+14*x^4+15*x^3+20*x^2+24*x+11', 'y^2=12*x^6+25*x^5+21*x^4+12*x^3+30*x^2+24*x+29'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.401225.1'], 'geometric_splitting_field': '4.0.401225.1', 'geometric_splitting_polynomials': [[1019, -64, 65, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 48, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 48, 'label': '2.37.c_cd', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.401225.1'], 'p': 37, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 2, 55, 74, 1369], 'poly_str': '1 2 55 74 1369 ', 'primitive_models': [], 'q': 37, 'real_poly': [1, 2, -19], 'simple_distinct': ['2.37.c_cd'], 'simple_factors': ['2.37.c_cdA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F-V-11'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.401225.1', 'splitting_polynomials': [[1019, -64, 65, -2, 1]], 'twist_count': 2, 'twists': [['2.37.ac_cd', '2.1369.ec_ich', 2]], 'weak_equivalence_count': 3, 'zfv_index': 16, 'zfv_index_factorization': [[2, 4]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 4, 'zfv_plus_index_factorization': [[2, 2]], 'zfv_plus_norm': 16049, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-F-V-11']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.37.c_cd', 'extension_degree': 1, 'extension_label': '2.37.c_cd', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.401225.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.37.c_cd', 'galois_group': '4T3', 'places': [['32', '0', '1', '0'], ['4', '2', '36', '0']]}