-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1144, 'abvar_counts': [1144, 2004288, 2589760888, 3511929467904, 4808517376429624, 6583025886882958656, 9012020785979978615992, 12337492431589641289678848, 16890053649418214541925884664, 23122484902415493548564705210688], 'abvar_counts_str': '1144 2004288 2589760888 3511929467904 4808517376429624 6583025886882958656 9012020785979978615992 12337492431589641289678848 16890053649418214541925884664 23122484902415493548564705210688 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.289742775550786, 0.485973727486263], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 30, 'curve_counts': [30, 1462, 51126, 1873870, 69342990, 2565755206, 94931450406, 3512473907230, 129961738555134, 4808584629407062], 'curve_counts_str': '30 1462 51126 1873870 69342990 2565755206 94931450406 3512473907230 129961738555134 4808584629407062 ', 'curves': ['y^2=5*x^6+4*x^5+x^4+8*x^3+27*x^2+36*x+24', 'y^2=8*x^6+17*x^5+6*x^4+34*x^3+11*x^2+26*x+22', 'y^2=13*x^6+2*x^5+3*x^4+12*x^3+3*x^2+x+22', 'y^2=35*x^6+12*x^5+11*x^4+33*x^3+10*x^2+24*x+15', 'y^2=18*x^6+27*x^5+11*x^4+2*x^3+24*x^2+6*x+4', 'y^2=5*x^6+10*x^5+23*x^4+17*x^3+9*x^2+3*x', 'y^2=30*x^6+9*x^5+26*x^4+8*x^3+7*x^2+15*x+23', 'y^2=18*x^6+4*x^5+2*x^4+25*x^3+35*x^2+25*x+22', 'y^2=11*x^6+13*x^5+24*x^4+18*x^3+15*x^2+31*x+6', 'y^2=35*x^6+18*x^5+15*x^4+27*x^3+33*x^2+36*x+8', 'y^2=31*x^6+31*x^5+13*x^4+17*x^3+13*x^2+17*x+22', 'y^2=19*x^6+31*x^5+34*x^4+x^3+14*x^2+9*x+5', 'y^2=35*x^6+28*x^5+16*x^4+28*x^3+27*x^2+6*x+16', 'y^2=9*x^6+36*x^5+7*x^4+2*x^3+28*x^2+32*x+31', 'y^2=24*x^6+3*x^5+12*x^4+11*x^3+28*x^2+4*x+11', 'y^2=12*x^6+28*x^5+22*x^4+14*x^3+31*x^2+28*x+29', 'y^2=10*x^5+35*x^4+8*x^3+6*x^2+25*x+18', 'y^2=23*x^6+7*x^5+6*x^4+6*x^3+25*x^2+20*x+32', 'y^2=14*x^6+33*x^5+20*x^4+28*x^3+4*x^2+35*x+15', 'y^2=8*x^6+25*x^4+5*x^3+20*x^2+x+19', 'y^2=17*x^6+10*x^5+32*x^4+7*x^3+10*x^2+21*x+21', 'y^2=23*x^6+10*x^5+7*x^4+9*x^3+19*x^2+26*x+35', 'y^2=18*x^6+30*x^5+21*x^4+21*x^3+8*x^2+17*x+13', 'y^2=12*x^6+28*x^5+20*x^4+19*x^3+25*x^2+10*x+33', 'y^2=20*x^6+20*x^5+29*x^4+25*x^3+33*x^2+8*x+24', 'y^2=23*x^6+32*x^5+36*x^4+11*x^3+6*x^2+23*x+1', 'y^2=11*x^6+32*x^5+x^4+27*x^3+2*x^2+35*x+8', 'y^2=10*x^6+8*x^5+31*x^4+29*x^3+3*x^2+25*x+10', 'y^2=34*x^6+14*x^5+6*x^4+21*x^3+27*x^2+31*x+20', 'y^2=23*x^6+31*x^5+7*x^4+24*x^3+33*x^2+14*x+8', 'y^2=3*x^6+35*x^5+5*x^4+29*x^3+23*x^2+20*x+8', 'y^2=34*x^6+14*x^5+4*x^4+2*x^3+31*x^2+19*x+23', 'y^2=18*x^5+21*x^4+16*x^3+12*x^2+29*x+30', 'y^2=24*x^6+34*x^5+14*x^4+7*x^3+27*x^2+29*x+5', 'y^2=30*x^6+16*x^5+36*x^4+24*x^3+19*x^2+14*x+35', 'y^2=11*x^6+20*x^5+21*x^4+9*x^3+18*x^2+27*x+25', 'y^2=19*x^6+30*x^5+15*x^4+35*x^3+23*x^2+10*x+2', 'y^2=2*x^6+28*x^5+12*x^4+25*x^3+7*x^2+11*x+27', 'y^2=32*x^6+32*x^5+5*x^4+33*x^3+36*x^2+19*x+6', 'y^2=31*x^6+30*x^5+21*x^4+32*x^3+13*x^2+11*x+16', 'y^2=32*x^6+26*x^5+34*x^4+22*x^3+22*x^2+34*x+1', 'y^2=30*x^6+32*x^5+x^4+23*x^3+10*x^2+35*x+36', 'y^2=8*x^6+13*x^5+5*x^4+13*x^3+x^2+21*x+28', 'y^2=33*x^5+3*x^4+31*x^3+5*x^2+29*x+15', 'y^2=15*x^6+17*x^5+15*x^4+19*x^3+35*x+15', 'y^2=25*x^6+27*x^5+x^4+7*x^3+18*x^2+36*x+21', 'y^2=18*x^6+19*x^5+5*x^4+30*x^3+2*x^2+27*x+22', 'y^2=7*x^5+26*x^4+23*x^3+13*x^2+16*x+7', 'y^2=35*x^6+12*x^5+25*x^4+26*x^3+16*x^2+35*x+13', 'y^2=8*x^6+21*x^5+25*x^4+3*x^3+27*x^2+2*x+22', 'y^2=13*x^6+33*x^5+36*x^4+3*x^3+34*x^2+35*x+33', 'y^2=4*x^6+6*x^5+3*x^4+15*x^3+32*x^2+19*x+19', 'y^2=33*x^6+31*x^5+22*x^4+13*x^3+16*x^2+7*x+27', 'y^2=6*x^6+17*x^5+32*x^4+14*x^3+x^2+7*x+20', 'y^2=17*x^6+27*x^5+35*x^4+15*x^3+7*x+5', 'y^2=34*x^6+12*x^4+31*x^3+32*x^2+35*x+21', 'y^2=5*x^6+28*x^5+32*x^4+8*x^3+5*x^2+12*x+2', 'y^2=17*x^6+6*x^5+14*x^4+18*x^3+36*x^2+20*x+35', 'y^2=9*x^6+3*x^5+20*x^4+23*x^3+9*x^2+20*x+12', 'y^2=6*x^6+6*x^5+25*x^4+22*x^3+6*x^2+x+35', 'y^2=34*x^6+4*x^5+11*x^4+24*x^3+6*x^2+32*x+12', 'y^2=8*x^6+11*x^5+9*x^4+28*x^3+24*x^2+31*x+18', 'y^2=33*x^6+7*x^5+18*x^4+8*x^3+28*x^2+8*x+14', 'y^2=14*x^6+20*x^5+12*x^4+34*x^3+5*x^2+7*x+25', 'y^2=30*x^6+17*x^5+4*x^4+5*x^3+11*x^2+26*x+5', 'y^2=35*x^6+35*x^5+32*x^4+x^3+21*x^2+36*x+22', 'y^2=3*x^6+36*x^5+18*x^4+29*x^3+18*x^2+4*x+32', 'y^2=24*x^6+2*x^5+35*x^4+23*x^2+4*x+8', 'y^2=20*x^6+10*x^5+20*x^4+29*x^3+13*x^2+34*x+20', 'y^2=23*x^6+22*x^5+31*x^4+30*x^3+21*x^2+3*x+35', 'y^2=18*x^6+8*x^5+8*x^4+26*x^3+9*x^2+7*x+24', 'y^2=25*x^6+6*x^5+10*x^4+15*x^3+9*x^2+x+15', 'y^2=6*x^6+18*x^5+12*x^4+21*x^3+12*x^2+17*x+35', 'y^2=29*x^6+19*x^5+31*x^4+26*x^3+33*x+30', 'y^2=21*x^6+10*x^5+24*x^4+6*x^3+20*x^2+16*x+20', 'y^2=24*x^6+26*x^5+6*x^4+15*x^3+36*x^2+19*x+24', 'y^2=27*x^6+11*x^5+7*x^4+24*x^2+31*x+23', 'y^2=20*x^6+25*x^5+22*x^4+15*x^3+30*x^2+35*x+2', 'y^2=21*x^6+4*x^5+34*x^4+34*x^3+x^2+32*x+31', 'y^2=24*x^6+31*x^5+19*x^3+7*x^2+31*x+30', 'y^2=21*x^6+22*x^5+10*x^4+6*x^3+31*x^2+18*x+23', 'y^2=18*x^6+35*x^5+13*x^4+6*x^3+29*x^2+29*x+3', 'y^2=22*x^6+8*x^5+33*x^4+4*x^3+29*x^2+6*x+14', 'y^2=34*x^6+x^5+4*x^4+13*x^3+30*x^2+32*x+8'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.490752.3'], 'geometric_splitting_field': '4.0.490752.3', 'geometric_splitting_polynomials': [[213, 0, 48, 0, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 84, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 84, 'label': '2.37.ai_da', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.490752.3'], 'p': 37, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 2], [1, 11, 1, 6], [1, 11, 3, 12], [1, 13, 1, 6]], 'poly': [1, -8, 78, -296, 1369], 'poly_str': '1 -8 78 -296 1369 ', 'primitive_models': [], 'principal_polarization_count': 84, 'q': 37, 'real_poly': [1, -8, 4], 'simple_distinct': ['2.37.ai_da'], 'simple_factors': ['2.37.ai_daA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F+3'], 'size': 132, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.490752.3', 'splitting_polynomials': [[213, 0, 48, 0, 1]], 'twist_count': 2, 'twists': [['2.37.i_da', '2.1369.do_gbe', 2]], 'weak_equivalence_count': 5, 'zfv_index': 8, 'zfv_index_factorization': [[2, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 48, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 13632, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F+3']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.37.ai_da', 'extension_degree': 1, 'extension_label': '2.37.ai_da', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.490752.3', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.37.ai_da', 'galois_group': '4T3', 'places': [['25', '1', '0', '0'], ['17', '1', '0', '0'], ['12', '1', '0', '0'], ['20', '1', '0', '0']]}