-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 660, 'abvar_counts': [660, 277200, 151976880, 78309000000, 41392898352300, 21913449061996800, 11592576558803108220, 6132693935649204000000, 3244149302401322023713840, 1716156111853193011023330000], 'abvar_counts_str': '660 277200 151976880 78309000000 41392898352300 21913449061996800 11592576558803108220 6132693935649204000000 3244149302401322023713840 1716156111853193011023330000 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.363071407864004, 0.887613658108918], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 29, 'curve_counts': [29, 525, 12488, 279833, 6431119, 148027950, 3404749153, 78312051793, 1801151768984, 41426517985125], 'curve_counts_str': '29 525 12488 279833 6431119 148027950 3404749153 78312051793 1801151768984 41426517985125 ', 'curves': ['y^2=21*x^6+2*x^5+16*x^4+14*x^3+2*x^2+15*x', 'y^2=x^6+15*x^5+7*x^4+19*x^3+15*x^2+7*x+1', 'y^2=9*x^6+10*x^5+2*x^4+15*x^2+2*x+20', 'y^2=11*x^6+8*x^4+13*x^3+22*x^2+21*x+6', 'y^2=6*x^6+2*x^5+11*x^4+11*x^2+10*x+18', 'y^2=4*x^6+14*x^5+8*x^4+12*x^3+20*x^2+8*x+8', 'y^2=2*x^6+15*x^5+2*x^4+22*x^3+18*x^2+18*x+4', 'y^2=9*x^6+16*x^5+13*x^4+12*x^3+20*x^2+18*x+19', 'y^2=14*x^6+13*x^5+10*x^4+11*x^3+x^2+20*x+13', 'y^2=14*x^6+2*x^5+10*x^4+3*x^3+7*x^2+21*x+16', 'y^2=13*x^6+9*x^5+9*x^4+7*x^3+6*x^2+16*x+12', 'y^2=6*x^6+5*x^5+10*x^4+7*x^2+16*x+1', 'y^2=x^6+14*x^5+2*x^4+x^3+19*x^2+20*x+13', 'y^2=x^6+2*x^5+7*x^4+2*x^3+20*x^2+21*x+22', 'y^2=8*x^6+16*x^5+10*x^4+8*x^3+14*x^2+15*x+3', 'y^2=17*x^6+13*x^5+20*x^4+12*x^3+10*x^2+16*x+12', 'y^2=9*x^6+8*x^5+8*x^4+15*x^3+1', 'y^2=19*x^6+18*x^5+8*x^4+12*x^3+8*x^2+13*x+18', 'y^2=6*x^6+7*x^5+7*x^4+2*x^3+5*x^2+5*x+16', 'y^2=12*x^6+20*x^5+15*x^4+11*x^3+19*x^2+9*x+6', 'y^2=11*x^6+16*x^5+6*x^4+5*x^3+7*x^2+2*x+2', 'y^2=16*x^6+10*x^5+6*x^4+13*x^3+9*x^2+16*x+14', 'y^2=18*x^6+10*x^5+12*x^4+22*x^3+18*x^2+4*x+17', 'y^2=21*x^6+14*x^5+22*x^4+17*x^3+16*x^2+17*x+17', 'y^2=12*x^6+8*x^5+7*x^4+x^3+15*x^2+15*x+22', 'y^2=5*x^6+7*x^5+15*x^4+17*x^3+14*x^2+6*x', 'y^2=6*x^6+20*x^5+22*x^4+10*x^3+21*x^2+16', 'y^2=18*x^5+20*x^4+2*x^3+22*x^2+15*x+13'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.19.1', '2.0.11.1'], 'geometric_splitting_field': '4.0.43681.2', 'geometric_splitting_polynomials': [[4, 0, 15, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 28, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 28, 'label': '2.23.f_k', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.19.1', '2.0.11.1'], 'p': 23, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 5, 10, 115, 529], 'poly_str': '1 5 10 115 529 ', 'primitive_models': [], 'q': 23, 'real_poly': [1, 5, -36], 'simple_distinct': ['1.23.ae', '1.23.j'], 'simple_factors': ['1.23.aeA', '1.23.jA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F+1', '13,8*F^2+63*F-35*V-1'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.43681.2', 'splitting_polynomials': [[4, 0, 15, 0, 1]], 'twist_count': 4, 'twists': [['2.23.an_de', '2.529.af_i', 2], ['2.23.af_k', '2.529.af_i', 2], ['2.23.n_de', '2.529.af_i', 2]], 'weak_equivalence_count': 4, 'zfv_index': 338, 'zfv_index_factorization': [[2, 1], [13, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 836, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F+1', '13,8*F^2+63*F-35*V-1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 13882
{'base_label': '2.23.f_k', 'extension_degree': 1, 'extension_label': '1.23.ae', 'multiplicity': 1}
-
id: 13883
{'base_label': '2.23.f_k', 'extension_degree': 1, 'extension_label': '1.23.j', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.19.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.23.ae', 'galois_group': '2T1', 'places': [['10', '1'], ['12', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.11.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.23.j', 'galois_group': '2T1', 'places': [['4', '1'], ['18', '1']]}