-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10254, 'abvar_counts': [10254, 163592316, 2083324088376, 26582785500966336, 339454332313272304014, 4334527811302799306386176, 55347539432397344199664463166, 706732565680879218709372382918400, 9024267966547233742173390403844317944, 115230877642801550804668106768926207067196], 'abvar_counts_str': '10254 163592316 2083324088376 26582785500966336 339454332313272304014 4334527811302799306386176 55347539432397344199664463166 706732565680879218709372382918400 9024267966547233742173390403844317944 115230877642801550804668106768926207067196 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.132447889921096, 0.415872641312296], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 89, 'curve_counts': [89, 12813, 1443848, 163037201, 18424221169, 2081954015442, 235260607408993, 26584442418112993, 3004041938443301624, 339456738979165585053], 'curve_counts_str': '89 12813 1443848 163037201 18424221169 2081954015442 235260607408993 26584442418112993 3004041938443301624 339456738979165585053 ', 'curves': ['y^2=92*x^6+61*x^5+80*x^4+106*x^3+3*x^2+109*x+95', 'y^2=30*x^6+86*x^5+25*x^4+69*x^3+16*x^2+103*x+104', 'y^2=42*x^6+23*x^5+9*x^4+87*x^3+91*x^2+91*x+49', 'y^2=8*x^6+97*x^5+104*x^4+26*x^3+90*x^2+95*x+19', 'y^2=76*x^6+97*x^5+42*x^4+63*x^3+33*x^2+88*x+62', 'y^2=40*x^6+43*x^5+13*x^4+54*x^3+85*x^2+34*x+38', 'y^2=22*x^6+9*x^5+19*x^4+72*x^3+111*x^2+91*x+32', 'y^2=39*x^6+87*x^5+22*x^4+71*x^3+15*x^2+112*x+9', 'y^2=73*x^6+107*x^5+96*x^4+14*x^3+89*x^2+107*x+25', 'y^2=89*x^6+71*x^5+83*x^4+12*x^3+22*x^2+18*x+103', 'y^2=3*x^6+16*x^5+32*x^4+86*x^3+70*x^2+22*x+70', 'y^2=33*x^6+81*x^5+85*x^4+72*x^3+14*x^2+71*x+45', 'y^2=45*x^6+18*x^5+54*x^4+26*x^3+6*x^2+91*x+96', 'y^2=82*x^6+19*x^5+54*x^4+81*x^3+6*x^2+79*x+59', 'y^2=78*x^6+54*x^5+5*x^4+99*x^3+53*x^2+50*x+84', 'y^2=106*x^6+102*x^5+35*x^4+11*x^3+41*x^2+33', 'y^2=84*x^6+28*x^5+6*x^4+52*x^3+34*x^2+4*x+45', 'y^2=80*x^6+68*x^5+110*x^4+44*x^3+68*x^2+95*x+35', 'y^2=106*x^6+4*x^5+104*x^4+70*x^3+84*x^2+35*x+43', 'y^2=28*x^6+29*x^5+10*x^4+106*x^3+29*x^2+2*x+46', 'y^2=17*x^6+39*x^5+51*x^4+13*x^3+19*x^2+17*x+75', 'y^2=3*x^6+93*x^5+69*x^4+37*x^3+112*x^2+45*x+49', 'y^2=93*x^6+55*x^5+85*x^4+73*x^3+29*x^2+10*x+10', 'y^2=65*x^6+98*x^5+112*x^4+98*x^3+15*x^2+106*x+21', 'y^2=25*x^6+27*x^5+4*x^4+94*x^3+84*x^2+54*x+89', 'y^2=39*x^6+3*x^5+96*x^4+32*x^3+89*x^2+47*x+49', 'y^2=61*x^6+24*x^5+40*x^4+8*x^3+18*x^2+75*x+77', 'y^2=79*x^6+107*x^5+73*x^4+95*x^3+102*x^2+17*x+90', 'y^2=43*x^6+89*x^5+22*x^4+4*x^3+14*x^2+74*x+99', 'y^2=19*x^6+36*x^5+72*x^4+7*x^3+68*x^2+27*x+81', 'y^2=107*x^6+46*x^5+95*x^4+33*x^3+108*x^2+95*x+6', 'y^2=38*x^6+78*x^5+24*x^4+55*x^3+63*x^2+41*x+63', 'y^2=22*x^6+16*x^5+38*x^4+21*x^3+16*x^2+106*x+8', 'y^2=111*x^6+40*x^5+66*x^4+70*x^3+109*x^2+78*x+86', 'y^2=53*x^6+31*x^5+88*x^4+21*x^3+74*x^2+62*x+111', 'y^2=92*x^6+56*x^5+50*x^4+26*x^3+69*x^2+7*x+34', 'y^2=80*x^6+70*x^5+x^4+87*x^3+111*x^2+6*x+3', 'y^2=73*x^6+88*x^5+95*x^4+67*x^3+32*x^2+100*x+93', 'y^2=76*x^6+100*x^5+57*x^4+59*x^3+105*x^2+95*x+85', 'y^2=17*x^6+94*x^5+48*x^4+5*x^3+32*x^2+93*x+62', 'y^2=57*x^6+57*x^4+38*x^3+65*x^2+37*x+45', 'y^2=6*x^6+78*x^5+3*x^4+75*x^3+33*x^2+87*x+88', 'y^2=59*x^6+21*x^5+67*x^4+102*x^3+51*x^2+2*x+55', 'y^2=19*x^6+82*x^5+30*x^4+77*x^3+69*x^2+63*x+3', 'y^2=43*x^6+39*x^5+103*x^4+26*x^3+107*x^2+53*x+58', 'y^2=72*x^6+105*x^5+3*x^4+74*x^3+69*x^2+89*x+76', 'y^2=99*x^6+112*x^5+112*x^4+60*x^3+49*x^2+34*x+66', 'y^2=67*x^6+17*x^5+58*x^4+15*x^3+24*x^2+37*x+23', 'y^2=7*x^6+69*x^5+71*x^4+94*x^3+14*x^2+74*x+65', 'y^2=44*x^6+74*x^5+42*x^4+19*x^3+68*x^2+109*x+20', 'y^2=54*x^6+70*x^5+66*x^4+63*x^3+61*x^2+17*x+53', 'y^2=109*x^6+21*x^5+5*x^4+65*x^3+22*x^2+21*x+12', 'y^2=11*x^6+11*x^5+76*x^4+2*x^3+54*x^2+21*x+107', 'y^2=40*x^6+75*x^5+40*x^4+83*x^3+112*x^2+35*x+35', 'y^2=87*x^6+86*x^5+58*x^4+83*x^3+24*x^2+76*x+86', 'y^2=58*x^6+54*x^5+111*x^4+108*x^3+34*x^2+87*x+47', 'y^2=79*x^6+59*x^5+72*x^4+73*x^3+67*x^2+76*x+97', 'y^2=17*x^6+x^5+23*x^4+82*x^3+112*x^2+10*x+63', 'y^2=89*x^6+35*x^5+97*x^4+105*x^3+58*x^2+39*x+75', 'y^2=96*x^6+65*x^5+x^4+65*x^3+40*x^2+47*x+80', 'y^2=104*x^6+64*x^5+25*x^4+92*x^3+26*x^2+94*x+39', 'y^2=2*x^5+112*x^4+63*x^3+13*x^2+14*x+43', 'y^2=93*x^6+35*x^5+59*x^4+x^3+53*x+15', 'y^2=90*x^6+45*x^5+19*x^4+66*x^3+64*x^2+97*x+89', 'y^2=104*x^6+33*x^5+33*x^4+26*x^3+27*x^2+80*x+30', 'y^2=90*x^6+104*x^5+49*x^4+61*x^3+69*x^2+25*x+6', 'y^2=16*x^6+x^5+17*x^4+30*x^3+84*x^2+103*x+105', 'y^2=36*x^6+66*x^5+13*x^4+36*x^3+28*x^2+39*x+101', 'y^2=80*x^6+8*x^5+51*x^4+9*x^3+8*x^2+5*x+64', 'y^2=3*x^6+2*x^5+63*x^4+44*x^3+12*x^2+27*x+29', 'y^2=101*x^6+36*x^5+x^4+110*x^3+72*x^2+71*x+37', 'y^2=25*x^6+53*x^5+94*x^4+76*x^3+5*x^2+18*x+96', 'y^2=100*x^6+46*x^5+60*x^4+35*x^3+109*x^2+107*x+112', 'y^2=65*x^6+42*x^5+12*x^4+84*x^3+86*x^2+5*x+110', 'y^2=38*x^6+80*x^5+62*x^4+96*x^3+70*x^2+26*x+16', 'y^2=109*x^6+29*x^5+98*x^4+54*x^3+81*x^2+22*x+5', 'y^2=27*x^6+46*x^5+61*x^4+15*x^3+39*x^2+9*x+39', 'y^2=99*x^6+56*x^5+68*x^4+48*x^3+79*x^2+65*x+11', 'y^2=79*x^6+40*x^5+108*x^4+6*x^3+95*x^2+52*x+34', 'y^2=18*x^6+95*x^5+77*x^4+76*x^3+5*x^2+53*x+21'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.1158443900.1'], 'geometric_splitting_field': '4.0.1158443900.1', 'geometric_splitting_polynomials': [[3739, -653, 100, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 80, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 80, 'label': '2.113.az_mw', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.1158443900.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -25, 334, -2825, 12769], 'poly_str': '1 -25 334 -2825 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -25, 108], 'simple_distinct': ['2.113.az_mw'], 'simple_factors': ['2.113.az_mwA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.1158443900.1', 'splitting_polynomials': [[3739, -653, 100, -1, 1]], 'twist_count': 2, 'twists': [['2.113.z_mw', '2.12769.br_agdw', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 31100, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.az_mw', 'extension_degree': 1, 'extension_label': '2.113.az_mw', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.1158443900.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.az_mw', 'galois_group': '4T3', 'places': [['11264/113', '142/113', '12762/113', '1/113'], ['6', '1', '0', '0']]}