-
nf_fields • Show schema
Hide schema
{'class_group': [], 'class_number': 1, 'cm': False, 'coeffs': [1296, 0, 768, 0, 1056, 0, 0, 0, 72, 0, -64, 0, -8, 0, 0, 0, 1], 'conductor': 0, 'degree': 16, 'dirichlet_group': [], 'disc_abs': 1936465405881733890441216, 'disc_rad': 6, 'disc_sign': 1, 'frobs': [[2, [0]], [3, [0]], [5, [[8, 2]]], [7, [[8, 2]]], [11, [[4, 2], [2, 4]]], [13, [[4, 2], [2, 4]]], [17, [[8, 1], [4, 1], [2, 2]]], [19, [[4, 2], [2, 2], [1, 4]]], [23, [[8, 2]]], [29, [[8, 2]]], [31, [[8, 2]]], [37, [[4, 4]]], [41, [[8, 1], [2, 1], [1, 6]]], [43, [[4, 1], [2, 5], [1, 2]]], [47, [[8, 2]]], [53, [[8, 2]]], [59, [[4, 1], [2, 5], [1, 2]]]], 'gal_is_abelian': False, 'gal_is_cyclic': False, 'gal_is_solvable': True, 'galois_disc_exponents': [9660, 1792], 'galois_label': '16T1455', 'galt': 1455, 'grd': 68.76674068410085, 'index': 1, 'inessentialp': [], 'is_galois': False, 'is_minimal_sibling': False, 'iso_number': 262, 'label': '16.0.1936465405881733890441216.262', 'local_algs': ['2.1.16.68f1.1309', '3.1.2.1a1.1', '3.2.1.0a1.1', '3.4.1.0a1.1', '3.1.8.7a1.2'], 'maximal_cm_subfield': [2, 0, 1], 'minimal_sibling': [3, 0, 0, 0, 12, 0, 0, 0, 14, 0, -8, 0, -4, 0, 0, 0, 1], 'monogenic': 0, 'narrow_class_group': [], 'narrow_class_number': 1, 'num_ram': 2, 'r2': 8, 'ramps': [2, 3], 'rd': 32.95627430251388, 'regulator': {'__RealLiteral__': 0, 'data': '1261081.5313986456', 'prec': 60}, 'res': {'sib': ['108,0,-144,0,96,0,192,0,252,0,120,0,40,0,8,0,1', '108,0,144,0,96,0,-192,0,252,0,-120,0,40,0,-8,0,1', '11664,0,-31104,0,-51840,0,810432,0,906672,0,-1007232,0,811200,0,-24960,0,158236,0,-24704,0,16640,0,544,0,1348,0,-112,0,32,0,8,0,1', '11664,0,-62208,0,374976,0,-864000,0,2416752,0,-4299840,0,4839840,0,-3786336,0,2121180,0,-841632,0,228624,0,-38544,0,2788,0,176,0,-16,0,-8,0,1', '11664,0,0,0,0,0,0,0,118944,0,0,0,-54720,0,0,0,27624,0,0,0,-2880,0,0,0,184,0,0,0,-16,0,0,0,1', '11664,0,31104,0,-51840,0,-810432,0,906672,0,1007232,0,811200,0,24960,0,158236,0,24704,0,16640,0,-544,0,1348,0,112,0,32,0,-8,0,1', '11664,0,62208,0,374976,0,864000,0,2416752,0,4299840,0,4839840,0,3786336,0,2121180,0,841632,0,228624,0,38544,0,2788,0,-176,0,-16,0,8,0,1', '1225449,0,-5746464,0,10920096,0,-9868176,0,4373388,0,-1348704,0,1187712,0,-1140624,0,741162,0,-372768,0,143712,0,-40272,0,8644,0,-1504,0,192,0,-16,0,1', '128164,0,-408896,0,604000,0,-284416,0,-223840,0,430240,0,-205776,0,-26720,0,77900,0,-40928,0,16528,0,-6848,0,2592,0,-720,0,136,0,-16,0,1', '1292769,0,-5931648,0,18521784,0,-5306112,0,-6606276,0,2139264,0,1224264,0,-428544,0,-143258,0,20096,0,22152,0,4352,0,-4,0,-128,0,-8,0,0,0,1', '1292769,0,5931648,0,18521784,0,5306112,0,-6606276,0,-2139264,0,1224264,0,428544,0,-143258,0,-20096,0,22152,0,-4352,0,-4,0,128,0,-8,0,0,0,1', '1296,0,-768,0,1056,0,0,0,72,0,64,0,-8,0,0,0,1', '146457,-168912,114480,322560,-99072,-546480,1812096,486336,-1143788,-650640,1286064,-355072,484032,-417456,-217280,29184,253806,-146032,21840,-34560,17728,-3984,8640,-3520,708,-816,592,0,0,-16,0,0,1', '152250921,0,-126130608,0,153085464,0,-118885968,0,75277836,0,-46345824,0,22662648,0,-9783504,0,3660714,0,-1130256,0,315384,0,-74064,0,13092,0,-1728,0,184,0,-16,0,1', '217474,-386208,477856,-359456,10408,258016,-1282048,2194624,-2282928,1393376,352560,-1552224,2226656,-2130384,1432080,-827120,313120,-44752,-37344,56304,-32560,12528,-3216,-1280,1872,-1072,728,-208,136,-16,16,0,1', '2304,0,0,0,18432,0,0,0,42240,0,-89088,0,170496,0,36864,0,144544,0,37376,0,31872,0,-1024,0,368,0,-320,0,32,0,0,0,1', '23409,0,-931824,0,11489688,0,27662832,0,26201868,0,11520720,0,3074952,0,341808,0,106774,0,89904,0,37096,0,8912,0,1772,0,496,0,120,0,16,0,1', '23409,0,931824,0,11489688,0,-27662832,0,26201868,0,-11520720,0,3074952,0,-341808,0,106774,0,-89904,0,37096,0,-8912,0,1772,0,-496,0,120,0,-16,0,1', '236196,0,-1982880,0,8841312,0,-22260096,0,35638704,0,-38690784,0,29647296,0,-16460640,0,6721884,0,-2036016,0,464688,0,-83904,0,13032,0,-1776,0,192,0,-16,0,1', '23841,-435024,3599424,-17739216,60448032,-153915552,306551664,-506808720,746806620,-1012480848,1236505680,-1322026896,1232406432,-1013364672,745844016,-497586576,303717370,-170725840,89169888,-43677008,20180672,-8792928,3591760,-1374160,496020,-170320,55408,-16464,4256,-896,144,-16,1', '28483569,0,24760080,0,-13684464,0,-11795328,0,5247540,0,2606832,0,-1337328,0,-211968,0,195990,0,-10320,0,-12048,0,1920,0,340,0,-48,0,-16,0,0,0,1', '287496,-570240,169344,-10212480,65162880,-197536896,405995904,-646754112,862890096,-1015881984,1067768448,-1006161216,858840192,-665642880,472277088,-307026240,184168744,-101641504,52554528,-25986080,12514352,-5799552,2547856,-1054528,414576,-154624,53392,-16368,4256,-896,144,-16,1', '29074,103776,474816,1788160,4280504,6072288,4565344,1400480,643792,2356960,2779520,429760,-1029888,151280,879232,114704,-299424,-50192,84160,26800,-17520,-11488,2912,2528,-656,-512,-8,96,8,-16,0,0,1', '3,0,0,0,12,0,0,0,14,0,-8,0,-4,0,0,0,1', '3,0,0,0,12,0,0,0,14,0,8,0,-4,0,0,0,1', '324,0,-864,0,22176,0,171648,0,261504,0,-71136,0,-113568,0,8064,0,41892,0,-1200,0,-2768,0,-256,0,352,0,80,0,-16,0,0,0,1', '324,0,864,0,22176,0,-171648,0,261504,0,71136,0,-113568,0,-8064,0,41892,0,1200,0,-2768,0,256,0,352,0,-80,0,-16,0,0,0,1', '3249,0,-864,0,28656,0,6768,0,185484,0,297696,0,564912,0,749616,0,567766,0,284768,0,103632,0,27984,0,6124,0,1056,0,144,0,16,0,1', '3249,0,864,0,28656,0,-6768,0,185484,0,-297696,0,564912,0,-749616,0,567766,0,-284768,0,103632,0,-27984,0,6124,0,-1056,0,144,0,-16,0,1', '36,0,-1536,0,18016,0,-29056,0,8480,0,-10016,0,10000,0,19168,0,8460,0,-37632,0,8976,0,4096,0,992,0,272,0,88,0,16,0,1', '36,0,1536,0,18016,0,29056,0,8480,0,10016,0,10000,0,-19168,0,8460,0,37632,0,8976,0,-4096,0,992,0,-272,0,88,0,-16,0,1', '36,0,3648,0,460384,0,190208,0,704800,0,553568,0,547632,0,395360,0,245132,0,124768,0,49424,0,16064,0,4192,0,848,0,136,0,16,0,1', '36,0,640,0,6240,0,38528,0,110368,0,43936,0,182544,0,26656,0,64268,0,-23104,0,4624,0,-640,0,-288,0,-80,0,88,0,-16,0,1', '4782969,0,-14171760,0,19709244,0,-15274008,0,6862806,0,-1930392,0,587448,0,-240768,0,73431,0,-12744,0,-2064,0,2736,0,-6,0,-216,0,52,0,-8,0,1', '531441,0,0,0,169128,0,0,0,358668,0,0,0,-349128,0,0,0,139158,0,0,0,-24360,0,0,0,3564,0,0,0,-56,0,0,0,1', '531441,0,1259712,0,-447120,0,-1819584,0,237492,0,590976,0,409104,0,183168,0,93078,0,50112,0,-13104,0,-6336,0,1236,0,0,0,48,0,0,0,1', '569,3968,8832,-7776,11824,-36608,-83888,88896,43036,30272,106432,-213216,-99696,228864,32272,-134016,-11602,67968,-4224,-18080,2000,-768,3376,-1216,172,192,-320,-32,112,0,-16,0,1', '582,3456,4080,768,12648,-38784,43440,37920,-209648,290752,-128960,-215808,450016,-389968,158928,-30704,82620,-151344,116368,-28448,-13664,5888,8352,-7440,1856,560,-120,-304,160,0,-16,0,1', '6561,0,-7776,0,38160,0,12672,0,37836,0,57888,0,14160,0,13824,0,8646,0,7392,0,6064,0,128,0,268,0,-160,0,-16,0,0,0,1', '6561,0,0,0,-87480,0,0,0,678780,0,0,0,-358344,0,0,0,-42330,0,0,0,20856,0,0,0,5308,0,0,0,136,0,0,0,1', '6561,0,7776,0,38160,0,-12672,0,37836,0,-57888,0,14160,0,-13824,0,8646,0,-7392,0,6064,0,-128,0,268,0,160,0,-16,0,0,0,1', '729,0,-1080,0,684,0,-168,0,174,0,24,0,60,0,8,0,1', '729,0,-7776,0,27864,0,-42768,0,93852,0,-396144,0,860184,0,-836208,0,311130,0,-4032,0,-3336,0,1968,0,756,0,624,0,152,0,16,0,1', '729,0,0,0,-1296,0,-1728,0,-7320,0,960,0,15000,0,10896,0,12670,0,2512,0,2784,0,400,0,-232,0,-16,0,-8,0,0,0,1', '729,0,0,0,-1296,0,1728,0,-7320,0,-960,0,15000,0,-10896,0,12670,0,-2512,0,2784,0,-400,0,-232,0,16,0,-8,0,0,0,1', '729,0,0,0,-1944,0,0,0,3564,0,0,0,-4104,0,0,0,954,0,0,0,936,0,0,0,228,0,0,0,24,0,0,0,1', '729,0,0,0,1944,0,0,0,3564,0,0,0,4104,0,0,0,954,0,0,0,-936,0,0,0,228,0,0,0,-24,0,0,0,1', '729,0,0,0,34344,0,-75816,0,9072,0,26352,0,-5472,0,31896,0,9198,0,-12240,0,11976,0,-4584,0,528,0,0,0,16,0,-8,0,1', '729,0,0,0,41796,0,-62208,0,596322,0,-1938816,0,-92448,0,1980288,0,1330407,0,385920,0,73224,0,12096,0,6942,0,-192,0,108,0,0,0,1', '729,0,0,0,41796,0,62208,0,596322,0,1938816,0,-92448,0,-1980288,0,1330407,0,-385920,0,73224,0,-12096,0,6942,0,192,0,108,0,0,0,1', '729,0,1080,0,684,0,168,0,174,0,-24,0,60,0,-8,0,1', '729,0,7776,0,27864,0,42768,0,93852,0,396144,0,860184,0,836208,0,311130,0,4032,0,-3336,0,-1968,0,756,0,-624,0,152,0,-16,0,1', '7584516,0,209952,0,7208352,0,5715360,0,241056,0,-1524096,0,759456,0,0,0,90180,0,-26352,0,7920,0,-1008,0,816,0,0,0,48,0,0,0,1', '81,0,-3240,0,41616,0,-149832,0,203904,0,-122184,0,60240,0,-4872,0,23058,0,-5928,0,-1616,0,-328,0,1152,0,312,0,48,0,-8,0,1', '81,0,-648,0,-216,0,8136,0,20388,0,36360,0,127560,0,192216,0,78742,0,-176152,0,91672,0,-27880,0,4996,0,-424,0,-8,0,8,0,1', '81,0,0,0,540,0,-2160,0,5598,0,-2664,0,-1296,0,3096,0,-1083,0,-936,0,624,0,360,0,238,0,224,0,92,0,16,0,1', '81,0,0,0,540,0,2160,0,5598,0,2664,0,-1296,0,-3096,0,-1083,0,936,0,624,0,-360,0,238,0,-224,0,92,0,-16,0,1', '81,0,648,0,-216,0,-8136,0,20388,0,-36360,0,127560,0,-192216,0,78742,0,176152,0,91672,0,27880,0,4996,0,424,0,-8,0,-8,0,1', '81,0,648,0,2268,0,3888,0,3330,0,504,0,-576,0,0,0,1221,0,720,0,-576,0,-408,0,754,0,-320,0,60,0,-8,0,1', '83619,39744,468360,464832,-519972,-757248,-1837248,-2211552,853516,3392720,4958584,5193088,5085324,4652816,3673344,2358912,1334764,705024,331896,121280,14428,-14080,-10288,-4416,-1832,-528,168,224,76,-16,-16,0,1', '9,0,-72,0,864,0,-14328,0,153624,0,-553176,0,855624,0,-378024,0,-109034,0,94952,0,3072,0,-7784,0,-232,0,184,0,24,0,8,0,1', '9,0,0,0,-36,0,0,0,102,0,-24,0,-192,0,192,0,241,0,-112,0,144,0,32,0,2,0,16,0,4,0,0,0,1', '9,0,0,0,-36,0,0,0,102,0,24,0,-192,0,-192,0,241,0,112,0,144,0,-32,0,2,0,-16,0,4,0,0,0,1', '9,0,0,0,-72,0,0,0,228,0,0,0,-312,0,0,0,106,0,0,0,152,0,0,0,44,0,0,0,8,0,0,0,1', '9,0,72,0,864,0,14328,0,153624,0,553176,0,855624,0,378024,0,-109034,0,-94952,0,3072,0,7784,0,-232,0,-184,0,24,0,-8,0,1']}, 'subfield_mults': [1, 1, 1], 'subfields': ['2.0.1', '3.0.2.0.1', '3.0.0.0.2.0.0.0.1'], 'torsion_gen': '\\( -1 \\)', 'torsion_order': 2, 'units': ['\\( \\frac{41}{20544} a^{14} - \\frac{39}{6848} a^{12} - \\frac{275}{10272} a^{10} - \\frac{169}{2568} a^{8} + \\frac{1019}{1712} a^{6} - \\frac{105}{1712} a^{4} - \\frac{57}{856} a^{2} - \\frac{929}{428} \\)', '\\( \\frac{1}{3424} a^{14} + \\frac{23}{6848} a^{12} + \\frac{11}{856} a^{10} + \\frac{7}{1712} a^{8} - \\frac{129}{856} a^{6} - \\frac{827}{1712} a^{4} - \\frac{113}{214} a^{2} - \\frac{64}{107} \\)', '\\( -\\frac{139}{246528} a^{15} - \\frac{35}{10272} a^{14} + \\frac{39}{13696} a^{13} + \\frac{17}{6848} a^{12} + \\frac{259}{123264} a^{11} + \\frac{665}{20544} a^{10} + \\frac{79}{15408} a^{9} + \\frac{1039}{5136} a^{8} - \\frac{1503}{6848} a^{7} - \\frac{735}{1712} a^{6} + \\frac{1389}{3424} a^{5} - \\frac{53}{1712} a^{4} - \\frac{5543}{10272} a^{3} - \\frac{5111}{1712} a^{2} + \\frac{6853}{2568} a - \\frac{397}{214} \\)', '\\( -\\frac{305}{123264} a^{15} + \\frac{41}{20544} a^{14} - \\frac{39}{13696} a^{13} - \\frac{39}{6848} a^{12} + \\frac{925}{30816} a^{11} - \\frac{275}{10272} a^{10} + \\frac{10705}{61632} a^{9} - \\frac{169}{2568} a^{8} - \\frac{479}{3424} a^{7} + \\frac{1019}{1712} a^{6} - \\frac{2887}{3424} a^{5} - \\frac{105}{1712} a^{4} - \\frac{325}{321} a^{3} - \\frac{57}{856} a^{2} - \\frac{9961}{5136} a - \\frac{929}{428} \\)', '\\( -\\frac{275}{246528} a^{15} + \\frac{67}{41088} a^{14} + \\frac{71}{13696} a^{13} + \\frac{25}{13696} a^{12} + \\frac{2189}{123264} a^{11} + \\frac{83}{20544} a^{10} + \\frac{1525}{30816} a^{9} - \\frac{1457}{20544} a^{8} - \\frac{2835}{6848} a^{7} - \\frac{99}{3424} a^{6} - \\frac{599}{3424} a^{5} - \\frac{3439}{3424} a^{4} - \\frac{22333}{10272} a^{3} - \\frac{375}{1712} a^{2} + \\frac{127}{321} a - \\frac{5111}{1712} \\)', '\\( -\\frac{275}{246528} a^{15} - \\frac{67}{41088} a^{14} + \\frac{71}{13696} a^{13} - \\frac{25}{13696} a^{12} + \\frac{2189}{123264} a^{11} - \\frac{83}{20544} a^{10} + \\frac{1525}{30816} a^{9} + \\frac{1457}{20544} a^{8} - \\frac{2835}{6848} a^{7} + \\frac{99}{3424} a^{6} - \\frac{599}{3424} a^{5} + \\frac{3439}{3424} a^{4} - \\frac{22333}{10272} a^{3} + \\frac{375}{1712} a^{2} + \\frac{127}{321} a + \\frac{5111}{1712} \\)', '\\( -\\frac{191}{82176} a^{15} + \\frac{11}{41088} a^{14} + \\frac{53}{13696} a^{13} + \\frac{15}{3424} a^{12} + \\frac{827}{41088} a^{11} + \\frac{7}{5136} a^{10} + \\frac{1351}{10272} a^{9} - \\frac{61}{5136} a^{8} - \\frac{2273}{6848} a^{7} - \\frac{473}{3424} a^{6} + \\frac{867}{3424} a^{5} + \\frac{205}{856} a^{4} - \\frac{10471}{3424} a^{3} - \\frac{1413}{856} a^{2} - \\frac{281}{428} a + \\frac{1085}{428} \\)'], 'used_grh': True, 'zk': ['1', 'a', 'a^2', 'a^3', '1/2*a^4', '1/4*a^5 - 1/2*a^3 - 1/2*a', '1/4*a^6 - 1/2*a^2', '1/4*a^7 - 1/2*a^3', '1/32*a^8 + 1/8*a^4 - 1/2*a^2 + 3/8', '1/32*a^9 - 1/8*a^5 - 1/8*a', '1/64*a^10 + 1/16*a^6 - 1/4*a^4 - 1/2*a^3 + 3/16*a^2', '1/64*a^11 + 1/16*a^7 - 5/16*a^3 - 1/2*a', '1/128*a^12 - 1/64*a^8 - 1/8*a^6 - 3/32*a^4 - 1/2*a^3 - 1/4*a^2 + 7/16', '1/128*a^13 - 1/64*a^9 - 1/8*a^7 - 3/32*a^5 - 1/4*a^3 + 7/16*a', '1/41088*a^14 - 7/6848*a^12 - 85/20544*a^10 - 157/10272*a^8 - 257/3424*a^6 + 261/1712*a^4 - 111/1712*a^2 - 7/856', '1/246528*a^15 - 19/6848*a^13 - 85/123264*a^11 - 799/61632*a^9 - 371/6848*a^7 - 5/856*a^5 - 1/4*a^4 + 1601/10272*a^3 - 1/2*a^2 - 863/5136*a - 1/2']}