Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
3.1.451.1 | $x^{3} - x^{2} - 5 x + 8$ | $-\,11\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.492.1 | $x^{3} - x^{2} + 3 x + 3$ | $-\,2^{2}\cdot 3\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.3.697.1 | $x^{3} - 7 x - 5$ | $17\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.984.1 | $x^{3} - x^{2} - 12$ | $-\,2^{3}\cdot 3\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.1107.1 | $x^{3} + 6 x - 3$ | $-\,3^{3}\cdot 41$ | $S_3$ (as 3T2) | $[2]$ |
3.1.1599.1 | $x^{3} + 3 x - 23$ | $-\,3\cdot 13\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.1763.1 | $x^{3} + 11 x - 8$ | $-\,41\cdot 43$ | $S_3$ (as 3T2) | trivial |
3.1.1927.1 | $x^{3} - x^{2} + 2 x - 9$ | $-\,41\cdot 47$ | $S_3$ (as 3T2) | $[2]$ |
3.1.2091.1 | $x^{3} - x^{2} - x - 26$ | $-\,3\cdot 17\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.2132.1 | $x^{3} - x^{2} - 3 x + 19$ | $-\,2^{2}\cdot 13\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.3.2296.1 | $x^{3} - x^{2} - 14 x - 14$ | $2^{3}\cdot 7\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.2747.1 | $x^{3} - x^{2} + x + 30$ | $-\,41\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.2911.1 | $x^{3} - x^{2} + 8 x - 9$ | $-\,41\cdot 71$ | $S_3$ (as 3T2) | $[2]$ |
3.3.2993.1 | $x^{3} - x^{2} - 12 x + 17$ | $41\cdot 73$ | $S_3$ (as 3T2) | trivial |
3.1.3075.1 | $x^{3} - x^{2} - 3 x + 12$ | $-\,3\cdot 5^{2}\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.3116.1 | $x^{3} - x^{2} + x - 11$ | $-\,2^{2}\cdot 19\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.3444.1 | $x^{3} - x^{2} - 12 x - 24$ | $-\,2^{2}\cdot 3\cdot 7\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.4428.1 | $x^{3} + 6 x - 38$ | $-\,2^{2}\cdot 3^{3}\cdot 41$ | $S_3$ (as 3T2) | $[3]$ |
3.1.4428.2 | $x^{3} + 12 x - 20$ | $-\,2^{2}\cdot 3^{3}\cdot 41$ | $S_3$ (as 3T2) | $[3]$ |
3.1.4715.1 | $x^{3} - 13 x - 32$ | $-\,5\cdot 23\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.4920.1 | $x^{3} - x^{2} - 10 x + 22$ | $-\,2^{3}\cdot 3\cdot 5\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.5371.1 | $x^{3} - x^{2} - 15 x - 22$ | $-\,41\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.5535.1 | $x^{3} - 3 x - 43$ | $-\,3^{3}\cdot 5\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.5576.1 | $x^{3} - x^{2} + x - 29$ | $-\,2^{3}\cdot 17\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.5699.1 | $x^{3} - x^{2} + 11 x + 2$ | $-\,41\cdot 139$ | $S_3$ (as 3T2) | trivial |
3.1.5740.1 | $x^{3} - x^{2} - x + 15$ | $-\,2^{2}\cdot 5\cdot 7\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.6068.1 | $x^{3} - x^{2} - 3 x - 29$ | $-\,2^{2}\cdot 37\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.6232.1 | $x^{3} - x^{2} + 17 x - 21$ | $-\,2^{3}\cdot 19\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.3.6396.1 | $x^{3} - x^{2} - 20 x + 24$ | $2^{2}\cdot 3\cdot 13\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.3.6601.1 | $x^{3} - 13 x - 9$ | $7\cdot 23\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.6888.1 | $x^{3} - x^{2} - 8 x + 36$ | $-\,2^{3}\cdot 3\cdot 7\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.7052.1 | $x^{3} - x^{2} + 7 x - 17$ | $-\,2^{2}\cdot 41\cdot 43$ | $S_3$ (as 3T2) | $[3]$ |
3.1.7052.2 | $x^{3} - x^{2} + 3 x - 17$ | $-\,2^{2}\cdot 41\cdot 43$ | $S_3$ (as 3T2) | $[3]$ |
3.1.7052.3 | $x^{3} - x^{2} + 11 x + 43$ | $-\,2^{2}\cdot 41\cdot 43$ | $S_3$ (as 3T2) | $[3]$ |
3.1.7175.1 | $x^{3} - x^{2} + 2 x + 32$ | $-\,5^{2}\cdot 7\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.7339.1 | $x^{3} - x^{2} + 11 x + 6$ | $-\,41\cdot 179$ | $S_3$ (as 3T2) | $[5]$ |
3.1.7831.1 | $x^{3} + 19 x - 12$ | $-\,41\cdot 191$ | $S_3$ (as 3T2) | $[7]$ |
3.1.8036.1 | $x^{3} + 14 x - 28$ | $-\,2^{2}\cdot 7^{2}\cdot 41$ | $S_3$ (as 3T2) | $[3]$ |
3.1.8200.1 | $x^{3} - x^{2} + 2 x - 18$ | $-\,2^{3}\cdot 5^{2}\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.8323.1 | $x^{3} - x^{2} + 7 x + 14$ | $-\,7\cdot 29\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.3.8692.1 | $x^{3} - x^{2} - 13 x - 1$ | $2^{2}\cdot 41\cdot 53$ | $S_3$ (as 3T2) | trivial |
3.1.8815.1 | $x^{3} + 13 x - 1$ | $-\,5\cdot 41\cdot 43$ | $S_3$ (as 3T2) | $[5]$ |
3.1.8979.1 | $x^{3} - x^{2} + 25 x - 36$ | $-\,3\cdot 41\cdot 73$ | $S_3$ (as 3T2) | trivial |
3.1.9143.1 | $x^{3} - x^{2} - 10 x - 19$ | $-\,41\cdot 223$ | $S_3$ (as 3T2) | trivial |
3.1.9471.1 | $x^{3} - x^{2} - 12 x - 21$ | $-\,3\cdot 7\cdot 11\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.9512.1 | $x^{3} - x^{2} + 21 x - 17$ | $-\,2^{3}\cdot 29\cdot 41$ | $S_3$ (as 3T2) | trivial |
3.1.9676.1 | $x^{3} - x^{2} + 11 x - 39$ | $-\,2^{2}\cdot 41\cdot 59$ | $S_3$ (as 3T2) | trivial |
3.3.9676.1 | $x^{3} - 22 x - 12$ | $2^{2}\cdot 41\cdot 59$ | $S_3$ (as 3T2) | trivial |
3.1.9799.1 | $x^{3} - x^{2} + 26 x + 19$ | $-\,41\cdot 239$ | $S_3$ (as 3T2) | trivial |
3.3.10004.1 | $x^{3} - 14 x - 6$ | $2^{2}\cdot 41\cdot 61$ | $S_3$ (as 3T2) | trivial |