Normalized defining polynomial
\( x^{3} + 6x - 38 \)
Invariants
| Degree: | $3$ |
| |
| Signature: | $[1, 1]$ |
| |
| Discriminant: |
\(-4428\)
\(\medspace = -\,2^{2}\cdot 3^{3}\cdot 41\)
|
| |
| Root discriminant: | \(16.42\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}41^{1/2}\approx 36.620144695373874$ | ||
| Ramified primes: |
\(2\), \(3\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-123}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$
| Monogenic: | No | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{3}$, which has order $3$ |
|
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental unit: |
$\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{5}{3}$
|
| |
| Regulator: | \( 3.65760853101 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{1}\cdot 3.65760853101 \cdot 3}{2\cdot\sqrt{4428}}\cr\approx \mathstrut & 1.03608297796 \end{aligned}\]
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | 6.0.2411683632.1 |
| Minimal sibling: | This field is its own minimal sibling |
Multiplicative Galois module structure
| $U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A'$ |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.1.0.1}{1} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }$ | R | ${\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(3\)
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
|
\(41\)
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 41.1.2.1a1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *6 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.123.2t1.a.a | $1$ | $ 3 \cdot 41 $ | \(\Q(\sqrt{-123}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *6 | 2.4428.3t2.a.a | $2$ | $ 2^{2} \cdot 3^{3} \cdot 41 $ | 3.1.4428.1 | $S_3$ (as 3T2) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.