Learn more

Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label Polynomial Discriminant Galois group Class group Regulator
4.2.4775.1 $x^{4} - x^{3} + 2 x^{2} - 9 x - 9$ $-\,5^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $2.72731892757$
4.2.5348.1 $x^{4} - x^{3} + 4 x^{2} - x - 1$ $-\,2^{2}\cdot 7\cdot 191$ $S_4$ (as 4T5) trivial $5.12711239714$
4.0.6685.1 $x^{4} - 2 x^{3} + 4 x^{2} - x + 3$ $5\cdot 7\cdot 191$ $S_4$ (as 4T5) trivial $2.49243428852$
4.2.20055.1 $x^{4} - x^{3} + x^{2} + 6 x - 9$ $-\,3\cdot 5\cdot 7\cdot 191$ $S_4$ (as 4T5) trivial $11.4047943035$
4.0.20628.1 $x^{4} - x^{3} + 3 x^{2} + 5 x + 16$ $2^{2}\cdot 3^{3}\cdot 191$ $S_4$ (as 4T5) $[4]$ $3.30120913265$
4.0.20628.2 $x^{4} - x^{3} + 8 x + 16$ $2^{2}\cdot 3^{3}\cdot 191$ $S_4$ (as 4T5) $[4]$ $3.64246303658$
4.2.20819.1 $x^{4} - 2 x^{3} - 4 x^{2} + 3 x + 7$ $-\,109\cdot 191$ $S_4$ (as 4T5) trivial $7.04070067301$
4.2.22920.1 $x^{4} - x^{3} - 4 x^{2} - 3 x - 3$ $-\,2^{3}\cdot 3\cdot 5\cdot 191$ $S_4$ (as 4T5) trivial $13.3760346896$
4.2.23875.1 $x^{4} - 2 x^{3} + 4 x^{2} - 3 x - 59$ $-\,5^{3}\cdot 191$ $D_{4}$ (as 4T3) trivial $4.20060067157$
4.2.27504.2 $x^{4} - x^{2} - 12 x - 11$ $-\,2^{4}\cdot 3^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $5.15093527712$
4.2.29032.1 $x^{4} - x^{3} + 2 x^{2} - 8 x - 16$ $-\,2^{3}\cdot 19\cdot 191$ $S_4$ (as 4T5) trivial $25.4557318757$
4.0.31897.1 $x^{4} - x^{3} + 5 x^{2} - 4 x + 9$ $167\cdot 191$ $S_4$ (as 4T5) trivial $10.6575414683$
4.2.32279.1 $x^{4} - x^{3} + 3 x^{2} - 16 x - 4$ $-\,13^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $7.35197021222$
4.2.33043.1 $x^{4} - x^{3} + 6 x - 1$ $-\,173\cdot 191$ $S_4$ (as 4T5) trivial $5.60479203921$
4.2.35335.1 $x^{4} - x^{3} + 3 x^{2} + 6 x - 4$ $-\,5\cdot 37\cdot 191$ $S_4$ (as 4T5) trivial $11.5163300791$
4.0.37436.2 $x^{4} - x^{3} + 7 x^{2} - 20 x + 50$ $2^{2}\cdot 7^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $5.7236496646$
4.2.39728.1 $x^{4} - 4 x^{2} - 10 x + 2$ $-\,2^{4}\cdot 13\cdot 191$ $S_4$ (as 4T5) trivial $12.6218009874$
4.2.40492.1 $x^{4} - 8 x^{2} - 6 x + 8$ $-\,2^{2}\cdot 53\cdot 191$ $S_4$ (as 4T5) trivial $24.2212565596$
4.2.45076.1 $x^{4} - x^{3} - 8 x^{2} + 11 x + 3$ $-\,2^{2}\cdot 59\cdot 191$ $S_4$ (as 4T5) trivial $23.6129237616$
4.0.46413.1 $x^{4} - x^{3} + 9 x^{2} - 6 x + 24$ $3^{5}\cdot 191$ $S_4$ (as 4T5) trivial $31.267483066$
4.2.48896.1 $x^{4} + 2 x^{2} - 20 x - 46$ $-\,2^{8}\cdot 191$ $D_{4}$ (as 4T3) trivial $12.6313549529$
4.2.49851.1 $x^{4} - 2 x^{3} + 4 x^{2} + 9 x - 3$ $-\,3^{2}\cdot 29\cdot 191$ $S_4$ (as 4T5) trivial $12.0845804652$
4.2.51188.1 $x^{4} - x^{3} - 2 x^{2} + 10 x - 12$ $-\,2^{2}\cdot 67\cdot 191$ $S_4$ (as 4T5) trivial $44.7243586662$
4.2.52907.1 $x^{4} - 4 x^{2} - 5 x + 3$ $-\,191\cdot 277$ $S_4$ (as 4T5) trivial $12.7923117454$
4.2.56536.2 $x^{4} - x^{3} + x^{2} + 8 x - 8$ $-\,2^{3}\cdot 37\cdot 191$ $S_4$ (as 4T5) trivial $15.1427813656$
4.2.56536.3 $x^{4} - 5 x^{2} - 14 x - 8$ $-\,2^{3}\cdot 37\cdot 191$ $S_4$ (as 4T5) trivial $44.1402437115$
4.2.56727.1 $x^{4} - x^{3} - 3 x^{2} - 4 x - 5$ $-\,3^{3}\cdot 11\cdot 191$ $S_4$ (as 4T5) trivial $21.2744406288$
4.2.56727.2 $x^{4} - x^{3} + 7 x + 2$ $-\,3^{3}\cdot 11\cdot 191$ $S_4$ (as 4T5) trivial $23.4309349075$
4.2.59019.1 $x^{4} - 8 x^{2} - 3 x + 12$ $-\,3\cdot 103\cdot 191$ $S_4$ (as 4T5) trivial $37.617580967$
4.2.64940.1 $x^{4} - x^{3} + 8 x^{2} + 8 x - 6$ $-\,2^{2}\cdot 5\cdot 17\cdot 191$ $S_4$ (as 4T5) trivial $40.5559395858$
4.0.64940.1 $x^{4} - x^{3} - 4 x^{2} + 11 x + 31$ $2^{2}\cdot 5\cdot 17\cdot 191$ $S_4$ (as 4T5) trivial $24.0164360306$
4.0.69333.2 $x^{4} - x^{3} - 6 x^{2} - 12 x + 45$ $3\cdot 11^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $15.1515174801$
4.0.71816.1 $x^{4} - 2 x^{3} + 10 x^{2} + 10 x + 13$ $2^{3}\cdot 47\cdot 191$ $S_4$ (as 4T5) $[7]$ $5.24534984609$
4.0.74872.1 $x^{4} - x^{3} + 12 x^{2} - 6 x + 28$ $2^{3}\cdot 7^{2}\cdot 191$ $S_4$ (as 4T5) trivial $44.8504799609$
4.0.74872.3 $x^{4} - x^{3} + 5 x^{2} + 23 x + 88$ $2^{3}\cdot 7^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $32.6578438342$
4.4.76400.1 $x^{4} - 28 x^{2} + 191$ $2^{4}\cdot 5^{2}\cdot 191$ $D_{4}$ (as 4T3) trivial $16.0836857039$
4.0.77928.1 $x^{4} - x^{3} + 5 x^{2} - 6 x + 18$ $2^{3}\cdot 3\cdot 17\cdot 191$ $S_4$ (as 4T5) trivial $19.2393174363$
4.0.82321.1 $x^{4} - x^{3} + 11 x^{2} + 9 x + 20$ $191\cdot 431$ $S_4$ (as 4T5) $[7]$ $3.55508246392$
4.0.85377.1 $x^{4} - x^{3} + 2 x^{2} + 3 x + 6$ $3\cdot 149\cdot 191$ $S_4$ (as 4T5) trivial $16.8981950952$
4.2.85568.2 $x^{4} - 2 x^{3} - 9 x^{2} + 6 x + 19$ $-\,2^{6}\cdot 7\cdot 191$ $S_4$ (as 4T5) trivial $18.8373797713$
4.0.85568.1 $x^{4} - 2 x^{3} + 23 x^{2} - 22 x + 89$ $2^{6}\cdot 7\cdot 191$ $D_{4}$ (as 4T3) $[2]$ $1.76274717404$
4.4.85568.1 $x^{4} - 2 x^{3} - 17 x^{2} + 18 x + 79$ $2^{6}\cdot 7\cdot 191$ $D_{4}$ (as 4T3) trivial $16.0845347739$
4.2.89388.1 $x^{4} - x^{3} - 4 x^{2} - 8 x + 4$ $-\,2^{2}\cdot 3^{2}\cdot 13\cdot 191$ $S_4$ (as 4T5) trivial $37.6870196495$
4.0.90725.1 $x^{4} - x^{3} + 30 x^{2} - 18 x + 239$ $5^{2}\cdot 19\cdot 191$ $D_{4}$ (as 4T3) $[4]$ $0.962423650119$
4.4.90725.1 $x^{4} - x^{3} - 33 x^{2} + 31 x + 211$ $5^{2}\cdot 19\cdot 191$ $D_{4}$ (as 4T3) trivial $10.1360083557$
4.0.93972.1 $x^{4} - x^{3} - 4 x^{2} + 6 x + 18$ $2^{2}\cdot 3\cdot 41\cdot 191$ $S_4$ (as 4T5) trivial $38.9501895183$
4.2.95500.1 $x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 16$ $-\,2^{2}\cdot 5^{3}\cdot 191$ $S_4$ (as 4T5) $[2]$ $17.7758558992$
4.2.95691.1 $x^{4} - 2 x^{3} + 4 x^{2} + 3 x - 15$ $-\,3\cdot 167\cdot 191$ $S_4$ (as 4T5) trivial $28.4066605077$
4.0.96837.1 $x^{4} - 2 x^{3} + 14 x^{2} - 13 x + 39$ $3\cdot 13^{2}\cdot 191$ $D_{4}$ (as 4T3) $[6]$ $2.38952643457$
4.2.99511.1 $x^{4} - x^{3} - 11 x^{2} + 2 x + 25$ $-\,191\cdot 521$ $S_4$ (as 4T5) trivial $24.9269841987$
Next   To download results, determine the number of results.