Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
4.2.4775.1 | $x^{4} - x^{3} + 2 x^{2} - 9 x - 9$ | $-\,5^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.5348.1 | $x^{4} - x^{3} + 4 x^{2} - x - 1$ | $-\,2^{2}\cdot 7\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.6685.1 | $x^{4} - 2 x^{3} + 4 x^{2} - x + 3$ | $5\cdot 7\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.20055.1 | $x^{4} - x^{3} + x^{2} + 6 x - 9$ | $-\,3\cdot 5\cdot 7\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.20628.1 | $x^{4} - x^{3} + 3 x^{2} + 5 x + 16$ | $2^{2}\cdot 3^{3}\cdot 191$ | $S_4$ (as 4T5) | $[4]$ |
4.0.20628.2 | $x^{4} - x^{3} + 8 x + 16$ | $2^{2}\cdot 3^{3}\cdot 191$ | $S_4$ (as 4T5) | $[4]$ |
4.2.20819.1 | $x^{4} - 2 x^{3} - 4 x^{2} + 3 x + 7$ | $-\,109\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.22920.1 | $x^{4} - x^{3} - 4 x^{2} - 3 x - 3$ | $-\,2^{3}\cdot 3\cdot 5\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.23875.1 | $x^{4} - 2 x^{3} + 4 x^{2} - 3 x - 59$ | $-\,5^{3}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.27504.2 | $x^{4} - x^{2} - 12 x - 11$ | $-\,2^{4}\cdot 3^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.29032.1 | $x^{4} - x^{3} + 2 x^{2} - 8 x - 16$ | $-\,2^{3}\cdot 19\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.31897.1 | $x^{4} - x^{3} + 5 x^{2} - 4 x + 9$ | $167\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.32279.1 | $x^{4} - x^{3} + 3 x^{2} - 16 x - 4$ | $-\,13^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.33043.1 | $x^{4} - x^{3} + 6 x - 1$ | $-\,173\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.35335.1 | $x^{4} - x^{3} + 3 x^{2} + 6 x - 4$ | $-\,5\cdot 37\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.37436.2 | $x^{4} - x^{3} + 7 x^{2} - 20 x + 50$ | $2^{2}\cdot 7^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.39728.1 | $x^{4} - 4 x^{2} - 10 x + 2$ | $-\,2^{4}\cdot 13\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.40492.1 | $x^{4} - 8 x^{2} - 6 x + 8$ | $-\,2^{2}\cdot 53\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.45076.1 | $x^{4} - x^{3} - 8 x^{2} + 11 x + 3$ | $-\,2^{2}\cdot 59\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.46413.1 | $x^{4} - x^{3} + 9 x^{2} - 6 x + 24$ | $3^{5}\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.48896.1 | $x^{4} + 2 x^{2} - 20 x - 46$ | $-\,2^{8}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.49851.1 | $x^{4} - 2 x^{3} + 4 x^{2} + 9 x - 3$ | $-\,3^{2}\cdot 29\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.51188.1 | $x^{4} - x^{3} - 2 x^{2} + 10 x - 12$ | $-\,2^{2}\cdot 67\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.52907.1 | $x^{4} - 4 x^{2} - 5 x + 3$ | $-\,191\cdot 277$ | $S_4$ (as 4T5) | trivial |
4.2.56536.2 | $x^{4} - x^{3} + x^{2} + 8 x - 8$ | $-\,2^{3}\cdot 37\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.56536.3 | $x^{4} - 5 x^{2} - 14 x - 8$ | $-\,2^{3}\cdot 37\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.56727.1 | $x^{4} - x^{3} - 3 x^{2} - 4 x - 5$ | $-\,3^{3}\cdot 11\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.56727.2 | $x^{4} - x^{3} + 7 x + 2$ | $-\,3^{3}\cdot 11\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.59019.1 | $x^{4} - 8 x^{2} - 3 x + 12$ | $-\,3\cdot 103\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.64940.1 | $x^{4} - x^{3} + 8 x^{2} + 8 x - 6$ | $-\,2^{2}\cdot 5\cdot 17\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.64940.1 | $x^{4} - x^{3} - 4 x^{2} + 11 x + 31$ | $2^{2}\cdot 5\cdot 17\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.69333.2 | $x^{4} - x^{3} - 6 x^{2} - 12 x + 45$ | $3\cdot 11^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.0.71816.1 | $x^{4} - 2 x^{3} + 10 x^{2} + 10 x + 13$ | $2^{3}\cdot 47\cdot 191$ | $S_4$ (as 4T5) | $[7]$ |
4.0.74872.1 | $x^{4} - x^{3} + 12 x^{2} - 6 x + 28$ | $2^{3}\cdot 7^{2}\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.74872.3 | $x^{4} - x^{3} + 5 x^{2} + 23 x + 88$ | $2^{3}\cdot 7^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.4.76400.1 | $x^{4} - 28 x^{2} + 191$ | $2^{4}\cdot 5^{2}\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.0.77928.1 | $x^{4} - x^{3} + 5 x^{2} - 6 x + 18$ | $2^{3}\cdot 3\cdot 17\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.82321.1 | $x^{4} - x^{3} + 11 x^{2} + 9 x + 20$ | $191\cdot 431$ | $S_4$ (as 4T5) | $[7]$ |
4.0.85377.1 | $x^{4} - x^{3} + 2 x^{2} + 3 x + 6$ | $3\cdot 149\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.85568.2 | $x^{4} - 2 x^{3} - 9 x^{2} + 6 x + 19$ | $-\,2^{6}\cdot 7\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.85568.1 | $x^{4} - 2 x^{3} + 23 x^{2} - 22 x + 89$ | $2^{6}\cdot 7\cdot 191$ | $D_{4}$ (as 4T3) | $[2]$ |
4.4.85568.1 | $x^{4} - 2 x^{3} - 17 x^{2} + 18 x + 79$ | $2^{6}\cdot 7\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.2.89388.1 | $x^{4} - x^{3} - 4 x^{2} - 8 x + 4$ | $-\,2^{2}\cdot 3^{2}\cdot 13\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.90725.1 | $x^{4} - x^{3} + 30 x^{2} - 18 x + 239$ | $5^{2}\cdot 19\cdot 191$ | $D_{4}$ (as 4T3) | $[4]$ |
4.4.90725.1 | $x^{4} - x^{3} - 33 x^{2} + 31 x + 211$ | $5^{2}\cdot 19\cdot 191$ | $D_{4}$ (as 4T3) | trivial |
4.0.93972.1 | $x^{4} - x^{3} - 4 x^{2} + 6 x + 18$ | $2^{2}\cdot 3\cdot 41\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.2.95500.1 | $x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 16$ | $-\,2^{2}\cdot 5^{3}\cdot 191$ | $S_4$ (as 4T5) | $[2]$ |
4.2.95691.1 | $x^{4} - 2 x^{3} + 4 x^{2} + 3 x - 15$ | $-\,3\cdot 167\cdot 191$ | $S_4$ (as 4T5) | trivial |
4.0.96837.1 | $x^{4} - 2 x^{3} + 14 x^{2} - 13 x + 39$ | $3\cdot 13^{2}\cdot 191$ | $D_{4}$ (as 4T3) | $[6]$ |
4.2.99511.1 | $x^{4} - x^{3} - 11 x^{2} + 2 x + 25$ | $-\,191\cdot 521$ | $S_4$ (as 4T5) | trivial |