Normalized defining polynomial
\( x^{4} - x^{3} + 349x^{2} + 589x + 47678 \)
Invariants
| Degree: | $4$ |
| |
| Signature: | $[0, 2]$ |
| |
| Discriminant: |
\(186477245\)
\(\medspace = 5\cdot 31^{2}\cdot 197^{2}\)
|
| |
| Root discriminant: | \(116.86\) |
| |
| Galois root discriminant: | $5^{1/2}31^{1/2}197^{1/2}\approx 174.7426679434648$ | ||
| Ramified primes: |
\(5\), \(31\), \(197\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-31}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2596}a^{3}-\frac{25}{1298}a^{2}+\frac{203}{2596}a+\frac{513}{1298}$
| Monogenic: | No | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental unit: |
$\frac{27\cdots 31}{236}a^{3}-\frac{32\cdots 01}{59}a^{2}-\frac{93\cdots 61}{236}a-\frac{13\cdots 51}{118}$
|
| |
| Regulator: | \( 309.802580591 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 309.802580591 \cdot 6}{2\cdot\sqrt{186477245}}\cr\approx \mathstrut & 2.68690988013 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_{4}$ |
| Character table for $D_{4}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(31\)
| 31.1.2.1a1.1 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 31.1.2.1a1.1 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(197\)
| 197.2.2.2a1.1 | $x^{4} + 384 x^{3} + 36868 x^{2} + 965 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |