Properties

Label 36.0.619...125.1
Degree $36$
Signature $[0, 18]$
Discriminant $6.199\times 10^{59}$
Root discriminant \(45.80\)
Ramified primes $5,19$
Class number $1417$ (GRH)
Class group [1417] (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1)
 
gp: K = bnfinit(y^36 - y^35 + 9*y^34 - 10*y^33 + 54*y^32 - 49*y^31 + 257*y^30 - 206*y^29 + 1100*y^28 - 836*y^27 + 3655*y^26 - 2571*y^25 + 10339*y^24 - 5625*y^23 + 24829*y^22 - 12149*y^21 + 52298*y^20 - 24437*y^19 + 84375*y^18 - 31001*y^17 + 114806*y^16 - 20386*y^15 + 122457*y^14 - 26351*y^13 + 111183*y^12 - 31899*y^11 + 59771*y^10 - 9196*y^9 + 26744*y^8 + 4893*y^7 + 5542*y^6 + 509*y^5 + 1260*y^4 - 205*y^3 + 35*y^2 - 5*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1)
 

\( x^{36} - x^{35} + 9 x^{34} - 10 x^{33} + 54 x^{32} - 49 x^{31} + 257 x^{30} - 206 x^{29} + 1100 x^{28} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(619876750267203693326033178758188478035934269428253173828125\) \(\medspace = 5^{27}\cdot 19^{32}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.80\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}19^{8/9}\approx 45.80336348303902$
Ramified primes:   \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(95=5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{95}(1,·)$, $\chi_{95}(4,·)$, $\chi_{95}(6,·)$, $\chi_{95}(7,·)$, $\chi_{95}(9,·)$, $\chi_{95}(11,·)$, $\chi_{95}(16,·)$, $\chi_{95}(17,·)$, $\chi_{95}(23,·)$, $\chi_{95}(24,·)$, $\chi_{95}(26,·)$, $\chi_{95}(28,·)$, $\chi_{95}(36,·)$, $\chi_{95}(39,·)$, $\chi_{95}(42,·)$, $\chi_{95}(43,·)$, $\chi_{95}(44,·)$, $\chi_{95}(47,·)$, $\chi_{95}(49,·)$, $\chi_{95}(54,·)$, $\chi_{95}(58,·)$, $\chi_{95}(61,·)$, $\chi_{95}(62,·)$, $\chi_{95}(63,·)$, $\chi_{95}(64,·)$, $\chi_{95}(66,·)$, $\chi_{95}(68,·)$, $\chi_{95}(73,·)$, $\chi_{95}(74,·)$, $\chi_{95}(77,·)$, $\chi_{95}(81,·)$, $\chi_{95}(82,·)$, $\chi_{95}(83,·)$, $\chi_{95}(87,·)$, $\chi_{95}(92,·)$, $\chi_{95}(93,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{69\!\cdots\!81}a^{33}+\frac{13\!\cdots\!95}{69\!\cdots\!81}a^{32}-\frac{26\!\cdots\!80}{69\!\cdots\!81}a^{31}-\frac{80\!\cdots\!15}{69\!\cdots\!81}a^{30}+\frac{25\!\cdots\!81}{69\!\cdots\!81}a^{29}+\frac{10\!\cdots\!02}{69\!\cdots\!81}a^{28}+\frac{34\!\cdots\!38}{69\!\cdots\!81}a^{27}-\frac{16\!\cdots\!11}{69\!\cdots\!81}a^{26}-\frac{27\!\cdots\!35}{69\!\cdots\!81}a^{25}+\frac{90\!\cdots\!71}{69\!\cdots\!81}a^{24}-\frac{29\!\cdots\!09}{69\!\cdots\!81}a^{23}-\frac{29\!\cdots\!60}{69\!\cdots\!81}a^{22}-\frac{10\!\cdots\!06}{69\!\cdots\!81}a^{21}-\frac{20\!\cdots\!91}{69\!\cdots\!81}a^{20}+\frac{29\!\cdots\!55}{69\!\cdots\!81}a^{19}-\frac{71\!\cdots\!96}{69\!\cdots\!81}a^{18}-\frac{84\!\cdots\!35}{69\!\cdots\!81}a^{17}-\frac{60\!\cdots\!28}{69\!\cdots\!81}a^{16}-\frac{25\!\cdots\!50}{69\!\cdots\!81}a^{15}+\frac{23\!\cdots\!30}{69\!\cdots\!81}a^{14}-\frac{23\!\cdots\!02}{69\!\cdots\!81}a^{13}-\frac{12\!\cdots\!22}{69\!\cdots\!81}a^{12}+\frac{65\!\cdots\!18}{69\!\cdots\!81}a^{11}+\frac{12\!\cdots\!13}{69\!\cdots\!81}a^{10}+\frac{85\!\cdots\!46}{69\!\cdots\!81}a^{9}+\frac{31\!\cdots\!18}{69\!\cdots\!81}a^{8}+\frac{23\!\cdots\!33}{69\!\cdots\!81}a^{7}+\frac{30\!\cdots\!24}{69\!\cdots\!81}a^{6}+\frac{48\!\cdots\!06}{69\!\cdots\!81}a^{5}-\frac{25\!\cdots\!85}{69\!\cdots\!81}a^{4}+\frac{13\!\cdots\!98}{69\!\cdots\!81}a^{3}+\frac{21\!\cdots\!53}{69\!\cdots\!81}a^{2}-\frac{23\!\cdots\!53}{69\!\cdots\!81}a+\frac{31\!\cdots\!98}{69\!\cdots\!81}$, $\frac{1}{69\!\cdots\!81}a^{34}-\frac{11\!\cdots\!27}{69\!\cdots\!81}a^{32}-\frac{24\!\cdots\!73}{69\!\cdots\!81}a^{31}-\frac{85\!\cdots\!83}{69\!\cdots\!81}a^{30}-\frac{74\!\cdots\!56}{69\!\cdots\!81}a^{29}+\frac{23\!\cdots\!12}{69\!\cdots\!81}a^{28}+\frac{32\!\cdots\!07}{69\!\cdots\!81}a^{27}-\frac{67\!\cdots\!52}{69\!\cdots\!81}a^{26}-\frac{27\!\cdots\!56}{69\!\cdots\!81}a^{25}-\frac{13\!\cdots\!54}{69\!\cdots\!81}a^{24}-\frac{24\!\cdots\!04}{69\!\cdots\!81}a^{23}+\frac{34\!\cdots\!30}{69\!\cdots\!81}a^{22}-\frac{17\!\cdots\!11}{69\!\cdots\!81}a^{21}+\frac{19\!\cdots\!94}{69\!\cdots\!81}a^{20}-\frac{66\!\cdots\!55}{69\!\cdots\!81}a^{19}-\frac{22\!\cdots\!65}{69\!\cdots\!81}a^{18}+\frac{81\!\cdots\!11}{69\!\cdots\!81}a^{17}-\frac{15\!\cdots\!22}{69\!\cdots\!81}a^{16}+\frac{25\!\cdots\!02}{69\!\cdots\!81}a^{15}+\frac{15\!\cdots\!58}{69\!\cdots\!81}a^{14}+\frac{12\!\cdots\!82}{69\!\cdots\!81}a^{13}+\frac{28\!\cdots\!53}{69\!\cdots\!81}a^{12}-\frac{12\!\cdots\!72}{69\!\cdots\!81}a^{11}-\frac{14\!\cdots\!61}{69\!\cdots\!81}a^{10}-\frac{29\!\cdots\!86}{69\!\cdots\!81}a^{9}-\frac{29\!\cdots\!26}{69\!\cdots\!81}a^{8}-\frac{32\!\cdots\!04}{69\!\cdots\!81}a^{7}+\frac{16\!\cdots\!82}{69\!\cdots\!81}a^{6}-\frac{14\!\cdots\!01}{69\!\cdots\!81}a^{5}+\frac{16\!\cdots\!46}{69\!\cdots\!81}a^{4}-\frac{18\!\cdots\!99}{69\!\cdots\!81}a^{3}+\frac{51\!\cdots\!29}{69\!\cdots\!81}a^{2}-\frac{15\!\cdots\!89}{69\!\cdots\!81}a-\frac{11\!\cdots\!31}{69\!\cdots\!81}$, $\frac{1}{69\!\cdots\!81}a^{35}-\frac{22\!\cdots\!28}{69\!\cdots\!81}a^{32}+\frac{18\!\cdots\!24}{69\!\cdots\!81}a^{31}+\frac{74\!\cdots\!05}{69\!\cdots\!81}a^{30}-\frac{17\!\cdots\!64}{69\!\cdots\!81}a^{29}+\frac{19\!\cdots\!60}{69\!\cdots\!81}a^{28}-\frac{26\!\cdots\!29}{69\!\cdots\!81}a^{27}-\frac{31\!\cdots\!75}{69\!\cdots\!81}a^{26}+\frac{21\!\cdots\!32}{69\!\cdots\!81}a^{25}-\frac{53\!\cdots\!88}{69\!\cdots\!81}a^{24}-\frac{18\!\cdots\!91}{69\!\cdots\!81}a^{23}+\frac{27\!\cdots\!68}{69\!\cdots\!81}a^{22}+\frac{33\!\cdots\!26}{69\!\cdots\!81}a^{21}+\frac{26\!\cdots\!57}{69\!\cdots\!81}a^{20}-\frac{84\!\cdots\!82}{69\!\cdots\!81}a^{19}-\frac{29\!\cdots\!07}{69\!\cdots\!81}a^{18}+\frac{75\!\cdots\!41}{69\!\cdots\!81}a^{17}-\frac{19\!\cdots\!07}{69\!\cdots\!81}a^{16}+\frac{28\!\cdots\!89}{69\!\cdots\!81}a^{15}+\frac{10\!\cdots\!29}{69\!\cdots\!81}a^{14}+\frac{23\!\cdots\!32}{69\!\cdots\!81}a^{13}-\frac{12\!\cdots\!15}{69\!\cdots\!81}a^{12}+\frac{80\!\cdots\!35}{69\!\cdots\!81}a^{11}-\frac{84\!\cdots\!20}{69\!\cdots\!81}a^{10}-\frac{48\!\cdots\!13}{69\!\cdots\!81}a^{9}-\frac{20\!\cdots\!59}{69\!\cdots\!81}a^{8}-\frac{44\!\cdots\!38}{69\!\cdots\!81}a^{7}+\frac{27\!\cdots\!45}{69\!\cdots\!81}a^{6}-\frac{17\!\cdots\!50}{69\!\cdots\!81}a^{5}-\frac{25\!\cdots\!42}{69\!\cdots\!81}a^{4}+\frac{27\!\cdots\!54}{69\!\cdots\!81}a^{3}-\frac{13\!\cdots\!62}{69\!\cdots\!81}a^{2}+\frac{17\!\cdots\!20}{12\!\cdots\!11}a+\frac{22\!\cdots\!98}{69\!\cdots\!81}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{1417}$, which has order $1417$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{98018614603376248755638426887}{698211859637920482850137709081} a^{35} - \frac{77957495843925714929975481484}{698211859637920482850137709081} a^{34} + \frac{862411637926344248365493007986}{698211859637920482850137709081} a^{33} - \frac{800350758196794064491879104033}{698211859637920482850137709081} a^{32} + \frac{5095354822265598531637471164998}{698211859637920482850137709081} a^{31} - \frac{3726043831537884794738635959811}{698211859637920482850137709081} a^{30} + \frac{24226493356547394782218122554116}{698211859637920482850137709081} a^{29} - \frac{15070265556555738508634675258685}{698211859637920482850137709081} a^{28} + \frac{103774749969720191272627890150758}{698211859637920482850137709081} a^{27} - \frac{60029068712046560540659652121352}{698211859637920482850137709081} a^{26} + \frac{341851612176577391061422317593523}{698211859637920482850137709081} a^{25} - \frac{179320454596751802972625993660648}{698211859637920482850137709081} a^{24} + \frac{963058691935447486156170852747226}{698211859637920482850137709081} a^{23} - \frac{345944131698702167858601037752092}{698211859637920482850137709081} a^{22} + \frac{2324267885866910053028056340284198}{698211859637920482850137709081} a^{21} - \frac{697794779012632487408312034781440}{698211859637920482850137709081} a^{20} + \frac{4890058057468305769685686441449209}{698211859637920482850137709081} a^{19} - \frac{1357823927921002608813853637536163}{698211859637920482850137709081} a^{18} + \frac{7795633891756236022988070847970870}{698211859637920482850137709081} a^{17} - \frac{1369960091523807512821314650702732}{698211859637920482850137709081} a^{16} + \frac{10655621153439239851104224729587305}{698211859637920482850137709081} a^{15} + \frac{271057445897344586221999627297660}{698211859637920482850137709081} a^{14} + \frac{11623160278901377609099406021338138}{698211859637920482850137709081} a^{13} - \frac{164947979001725573592594889658194}{698211859637920482850137709081} a^{12} + \frac{10390321101751810372790451390091558}{698211859637920482850137709081} a^{11} - \frac{939070558154886093810413548555968}{698211859637920482850137709081} a^{10} + \frac{5238814762249825672048685538080554}{698211859637920482850137709081} a^{9} + \frac{259458766280017392596327653538553}{698211859637920482850137709081} a^{8} + \frac{2445369531531812359813664767472238}{698211859637920482850137709081} a^{7} + \frac{1006220166043971741659192684974359}{698211859637920482850137709081} a^{6} + \frac{640133813668034625377434461857485}{698211859637920482850137709081} a^{5} + \frac{158975791703915596210541900674723}{698211859637920482850137709081} a^{4} + \frac{128864394822851049184824277119801}{698211859637920482850137709081} a^{3} + \frac{4619392013553739456590457599211}{698211859637920482850137709081} a^{2} - \frac{589806502558576625488581748024}{698211859637920482850137709081} a + \frac{196486457262692508655909698442}{698211859637920482850137709081} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{27\!\cdots\!40}{69\!\cdots\!81}a^{35}-\frac{41\!\cdots\!85}{69\!\cdots\!81}a^{34}+\frac{26\!\cdots\!36}{69\!\cdots\!81}a^{33}-\frac{40\!\cdots\!77}{69\!\cdots\!81}a^{32}+\frac{16\!\cdots\!14}{69\!\cdots\!81}a^{31}-\frac{20\!\cdots\!75}{69\!\cdots\!81}a^{30}+\frac{77\!\cdots\!84}{69\!\cdots\!81}a^{29}-\frac{92\!\cdots\!24}{69\!\cdots\!81}a^{28}+\frac{32\!\cdots\!62}{69\!\cdots\!81}a^{27}-\frac{38\!\cdots\!76}{69\!\cdots\!81}a^{26}+\frac{11\!\cdots\!20}{69\!\cdots\!81}a^{25}-\frac{12\!\cdots\!56}{69\!\cdots\!81}a^{24}+\frac{31\!\cdots\!60}{69\!\cdots\!81}a^{23}-\frac{29\!\cdots\!79}{69\!\cdots\!81}a^{22}+\frac{74\!\cdots\!19}{69\!\cdots\!81}a^{21}-\frac{67\!\cdots\!65}{69\!\cdots\!81}a^{20}+\frac{15\!\cdots\!74}{69\!\cdots\!81}a^{19}-\frac{13\!\cdots\!84}{69\!\cdots\!81}a^{18}+\frac{25\!\cdots\!50}{69\!\cdots\!81}a^{17}-\frac{19\!\cdots\!12}{69\!\cdots\!81}a^{16}+\frac{34\!\cdots\!85}{69\!\cdots\!81}a^{15}-\frac{20\!\cdots\!16}{69\!\cdots\!81}a^{14}+\frac{33\!\cdots\!36}{69\!\cdots\!81}a^{13}-\frac{23\!\cdots\!55}{69\!\cdots\!81}a^{12}+\frac{31\!\cdots\!32}{69\!\cdots\!81}a^{11}-\frac{23\!\cdots\!51}{69\!\cdots\!81}a^{10}+\frac{18\!\cdots\!68}{69\!\cdots\!81}a^{9}-\frac{10\!\cdots\!29}{69\!\cdots\!81}a^{8}+\frac{70\!\cdots\!18}{69\!\cdots\!81}a^{7}-\frac{21\!\cdots\!11}{69\!\cdots\!81}a^{6}+\frac{11\!\cdots\!09}{69\!\cdots\!81}a^{5}-\frac{76\!\cdots\!97}{69\!\cdots\!81}a^{4}+\frac{12\!\cdots\!72}{69\!\cdots\!81}a^{3}-\frac{27\!\cdots\!39}{69\!\cdots\!81}a^{2}+\frac{32\!\cdots\!10}{69\!\cdots\!81}a-\frac{75\!\cdots\!86}{69\!\cdots\!81}$, $\frac{37\!\cdots\!70}{69\!\cdots\!81}a^{35}-\frac{86\!\cdots\!40}{69\!\cdots\!81}a^{34}+\frac{36\!\cdots\!80}{69\!\cdots\!81}a^{33}-\frac{78\!\cdots\!60}{69\!\cdots\!81}a^{32}+\frac{22\!\cdots\!64}{69\!\cdots\!81}a^{31}-\frac{41\!\cdots\!85}{69\!\cdots\!81}a^{30}+\frac{10\!\cdots\!16}{69\!\cdots\!81}a^{29}-\frac{18\!\cdots\!20}{69\!\cdots\!81}a^{28}+\frac{44\!\cdots\!36}{69\!\cdots\!81}a^{27}-\frac{77\!\cdots\!76}{69\!\cdots\!81}a^{26}+\frac{14\!\cdots\!77}{69\!\cdots\!81}a^{25}-\frac{24\!\cdots\!44}{69\!\cdots\!81}a^{24}+\frac{41\!\cdots\!00}{69\!\cdots\!81}a^{23}-\frac{61\!\cdots\!24}{69\!\cdots\!81}a^{22}+\frac{92\!\cdots\!80}{69\!\cdots\!81}a^{21}-\frac{14\!\cdots\!38}{69\!\cdots\!81}a^{20}+\frac{18\!\cdots\!96}{69\!\cdots\!81}a^{19}-\frac{29\!\cdots\!20}{69\!\cdots\!81}a^{18}+\frac{29\!\cdots\!76}{69\!\cdots\!81}a^{17}-\frac{41\!\cdots\!16}{69\!\cdots\!81}a^{16}+\frac{35\!\cdots\!52}{69\!\cdots\!81}a^{15}-\frac{47\!\cdots\!48}{69\!\cdots\!81}a^{14}+\frac{25\!\cdots\!40}{69\!\cdots\!81}a^{13}-\frac{52\!\cdots\!64}{69\!\cdots\!81}a^{12}+\frac{24\!\cdots\!84}{69\!\cdots\!81}a^{11}-\frac{45\!\cdots\!79}{69\!\cdots\!81}a^{10}+\frac{10\!\cdots\!68}{69\!\cdots\!81}a^{9}-\frac{12\!\cdots\!24}{69\!\cdots\!81}a^{8}-\frac{15\!\cdots\!68}{69\!\cdots\!81}a^{7}-\frac{25\!\cdots\!76}{69\!\cdots\!81}a^{6}-\frac{70\!\cdots\!32}{69\!\cdots\!81}a^{5}-\frac{68\!\cdots\!44}{69\!\cdots\!81}a^{4}+\frac{11\!\cdots\!36}{69\!\cdots\!81}a^{3}-\frac{18\!\cdots\!48}{69\!\cdots\!81}a^{2}+\frac{27\!\cdots\!48}{69\!\cdots\!81}a+\frac{74\!\cdots\!25}{69\!\cdots\!81}$, $\frac{31\!\cdots\!40}{69\!\cdots\!81}a^{35}-\frac{73\!\cdots\!00}{69\!\cdots\!81}a^{34}+\frac{30\!\cdots\!00}{69\!\cdots\!81}a^{33}-\frac{66\!\cdots\!00}{69\!\cdots\!81}a^{32}+\frac{19\!\cdots\!60}{69\!\cdots\!81}a^{31}-\frac{35\!\cdots\!69}{69\!\cdots\!81}a^{30}+\frac{89\!\cdots\!40}{69\!\cdots\!81}a^{29}-\frac{15\!\cdots\!00}{69\!\cdots\!81}a^{28}+\frac{37\!\cdots\!40}{69\!\cdots\!81}a^{27}-\frac{65\!\cdots\!40}{69\!\cdots\!81}a^{26}+\frac{12\!\cdots\!20}{69\!\cdots\!81}a^{25}-\frac{20\!\cdots\!60}{69\!\cdots\!81}a^{24}+\frac{35\!\cdots\!00}{69\!\cdots\!81}a^{23}-\frac{52\!\cdots\!60}{69\!\cdots\!81}a^{22}+\frac{78\!\cdots\!00}{69\!\cdots\!81}a^{21}-\frac{12\!\cdots\!31}{69\!\cdots\!81}a^{20}+\frac{16\!\cdots\!40}{69\!\cdots\!81}a^{19}-\frac{24\!\cdots\!00}{69\!\cdots\!81}a^{18}+\frac{25\!\cdots\!40}{69\!\cdots\!81}a^{17}-\frac{34\!\cdots\!40}{69\!\cdots\!81}a^{16}+\frac{30\!\cdots\!35}{69\!\cdots\!81}a^{15}-\frac{39\!\cdots\!20}{69\!\cdots\!81}a^{14}+\frac{21\!\cdots\!00}{69\!\cdots\!81}a^{13}-\frac{44\!\cdots\!60}{69\!\cdots\!81}a^{12}+\frac{20\!\cdots\!60}{69\!\cdots\!81}a^{11}-\frac{38\!\cdots\!81}{69\!\cdots\!81}a^{10}+\frac{87\!\cdots\!20}{69\!\cdots\!81}a^{9}-\frac{10\!\cdots\!60}{69\!\cdots\!81}a^{8}-\frac{12\!\cdots\!20}{69\!\cdots\!81}a^{7}-\frac{21\!\cdots\!40}{69\!\cdots\!81}a^{6}-\frac{54\!\cdots\!85}{69\!\cdots\!81}a^{5}-\frac{58\!\cdots\!60}{69\!\cdots\!81}a^{4}+\frac{94\!\cdots\!40}{69\!\cdots\!81}a^{3}-\frac{16\!\cdots\!20}{69\!\cdots\!81}a^{2}+\frac{23\!\cdots\!20}{69\!\cdots\!81}a+\frac{17\!\cdots\!24}{69\!\cdots\!81}$, $\frac{30\!\cdots\!06}{69\!\cdots\!81}a^{35}-\frac{71\!\cdots\!90}{69\!\cdots\!81}a^{34}+\frac{29\!\cdots\!30}{69\!\cdots\!81}a^{33}-\frac{64\!\cdots\!10}{69\!\cdots\!81}a^{32}+\frac{18\!\cdots\!04}{69\!\cdots\!81}a^{31}-\frac{34\!\cdots\!34}{69\!\cdots\!81}a^{30}+\frac{86\!\cdots\!76}{69\!\cdots\!81}a^{29}-\frac{15\!\cdots\!20}{69\!\cdots\!81}a^{28}+\frac{36\!\cdots\!46}{69\!\cdots\!81}a^{27}-\frac{63\!\cdots\!36}{69\!\cdots\!81}a^{26}+\frac{12\!\cdots\!46}{69\!\cdots\!81}a^{25}-\frac{20\!\cdots\!34}{69\!\cdots\!81}a^{24}+\frac{34\!\cdots\!50}{69\!\cdots\!81}a^{23}-\frac{50\!\cdots\!64}{69\!\cdots\!81}a^{22}+\frac{76\!\cdots\!30}{69\!\cdots\!81}a^{21}-\frac{11\!\cdots\!38}{69\!\cdots\!81}a^{20}+\frac{15\!\cdots\!56}{69\!\cdots\!81}a^{19}-\frac{23\!\cdots\!70}{69\!\cdots\!81}a^{18}+\frac{24\!\cdots\!86}{69\!\cdots\!81}a^{17}-\frac{33\!\cdots\!76}{69\!\cdots\!81}a^{16}+\frac{29\!\cdots\!37}{69\!\cdots\!81}a^{15}-\frac{38\!\cdots\!28}{69\!\cdots\!81}a^{14}+\frac{20\!\cdots\!90}{69\!\cdots\!81}a^{13}-\frac{42\!\cdots\!04}{69\!\cdots\!81}a^{12}+\frac{20\!\cdots\!74}{69\!\cdots\!81}a^{11}-\frac{38\!\cdots\!08}{69\!\cdots\!81}a^{10}+\frac{84\!\cdots\!98}{69\!\cdots\!81}a^{9}-\frac{98\!\cdots\!64}{69\!\cdots\!81}a^{8}-\frac{12\!\cdots\!48}{69\!\cdots\!81}a^{7}-\frac{20\!\cdots\!86}{69\!\cdots\!81}a^{6}-\frac{48\!\cdots\!46}{69\!\cdots\!81}a^{5}-\frac{56\!\cdots\!34}{69\!\cdots\!81}a^{4}+\frac{92\!\cdots\!46}{69\!\cdots\!81}a^{3}-\frac{15\!\cdots\!28}{69\!\cdots\!81}a^{2}+\frac{22\!\cdots\!28}{69\!\cdots\!81}a+\frac{13\!\cdots\!59}{69\!\cdots\!81}$, $\frac{20\!\cdots\!45}{69\!\cdots\!81}a^{35}-\frac{46\!\cdots\!75}{69\!\cdots\!81}a^{34}+\frac{19\!\cdots\!25}{69\!\cdots\!81}a^{33}-\frac{42\!\cdots\!75}{69\!\cdots\!81}a^{32}+\frac{12\!\cdots\!60}{69\!\cdots\!81}a^{31}-\frac{22\!\cdots\!45}{69\!\cdots\!81}a^{30}+\frac{57\!\cdots\!90}{69\!\cdots\!81}a^{29}-\frac{10\!\cdots\!00}{69\!\cdots\!81}a^{28}+\frac{23\!\cdots\!15}{69\!\cdots\!81}a^{27}-\frac{41\!\cdots\!40}{69\!\cdots\!81}a^{26}+\frac{80\!\cdots\!80}{69\!\cdots\!81}a^{25}-\frac{13\!\cdots\!35}{69\!\cdots\!81}a^{24}+\frac{22\!\cdots\!75}{69\!\cdots\!81}a^{23}-\frac{33\!\cdots\!10}{69\!\cdots\!81}a^{22}+\frac{49\!\cdots\!25}{69\!\cdots\!81}a^{21}-\frac{76\!\cdots\!10}{69\!\cdots\!81}a^{20}+\frac{10\!\cdots\!90}{69\!\cdots\!81}a^{19}-\frac{15\!\cdots\!25}{69\!\cdots\!81}a^{18}+\frac{16\!\cdots\!65}{69\!\cdots\!81}a^{17}-\frac{22\!\cdots\!40}{69\!\cdots\!81}a^{16}+\frac{19\!\cdots\!54}{69\!\cdots\!81}a^{15}-\frac{25\!\cdots\!70}{69\!\cdots\!81}a^{14}+\frac{13\!\cdots\!25}{69\!\cdots\!81}a^{13}-\frac{28\!\cdots\!60}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!35}{69\!\cdots\!81}a^{11}-\frac{24\!\cdots\!20}{69\!\cdots\!81}a^{10}+\frac{55\!\cdots\!45}{69\!\cdots\!81}a^{9}-\frac{65\!\cdots\!10}{69\!\cdots\!81}a^{8}-\frac{81\!\cdots\!70}{69\!\cdots\!81}a^{7}-\frac{13\!\cdots\!65}{69\!\cdots\!81}a^{6}-\frac{44\!\cdots\!83}{69\!\cdots\!81}a^{5}-\frac{37\!\cdots\!35}{69\!\cdots\!81}a^{4}+\frac{60\!\cdots\!65}{69\!\cdots\!81}a^{3}-\frac{10\!\cdots\!70}{69\!\cdots\!81}a^{2}+\frac{15\!\cdots\!20}{69\!\cdots\!81}a-\frac{76\!\cdots\!65}{69\!\cdots\!81}$, $\frac{31\!\cdots\!05}{69\!\cdots\!81}a^{35}-\frac{73\!\cdots\!75}{69\!\cdots\!81}a^{34}+\frac{30\!\cdots\!25}{69\!\cdots\!81}a^{33}-\frac{65\!\cdots\!75}{69\!\cdots\!81}a^{32}+\frac{19\!\cdots\!00}{69\!\cdots\!81}a^{31}-\frac{34\!\cdots\!00}{69\!\cdots\!81}a^{30}+\frac{88\!\cdots\!50}{69\!\cdots\!81}a^{29}-\frac{15\!\cdots\!00}{69\!\cdots\!81}a^{28}+\frac{37\!\cdots\!75}{69\!\cdots\!81}a^{27}-\frac{65\!\cdots\!00}{69\!\cdots\!81}a^{26}+\frac{12\!\cdots\!40}{69\!\cdots\!81}a^{25}-\frac{20\!\cdots\!75}{69\!\cdots\!81}a^{24}+\frac{34\!\cdots\!75}{69\!\cdots\!81}a^{23}-\frac{51\!\cdots\!50}{69\!\cdots\!81}a^{22}+\frac{77\!\cdots\!25}{69\!\cdots\!81}a^{21}-\frac{11\!\cdots\!90}{69\!\cdots\!81}a^{20}+\frac{15\!\cdots\!50}{69\!\cdots\!81}a^{19}-\frac{24\!\cdots\!25}{69\!\cdots\!81}a^{18}+\frac{24\!\cdots\!25}{69\!\cdots\!81}a^{17}-\frac{34\!\cdots\!00}{69\!\cdots\!81}a^{16}+\frac{29\!\cdots\!20}{69\!\cdots\!81}a^{15}-\frac{39\!\cdots\!50}{69\!\cdots\!81}a^{14}+\frac{21\!\cdots\!25}{69\!\cdots\!81}a^{13}-\frac{43\!\cdots\!00}{69\!\cdots\!81}a^{12}+\frac{20\!\cdots\!75}{69\!\cdots\!81}a^{11}-\frac{38\!\cdots\!40}{69\!\cdots\!81}a^{10}+\frac{86\!\cdots\!25}{69\!\cdots\!81}a^{9}-\frac{10\!\cdots\!50}{69\!\cdots\!81}a^{8}-\frac{12\!\cdots\!50}{69\!\cdots\!81}a^{7}-\frac{21\!\cdots\!25}{69\!\cdots\!81}a^{6}-\frac{62\!\cdots\!91}{69\!\cdots\!81}a^{5}-\frac{57\!\cdots\!75}{69\!\cdots\!81}a^{4}+\frac{94\!\cdots\!25}{69\!\cdots\!81}a^{3}-\frac{15\!\cdots\!50}{69\!\cdots\!81}a^{2}+\frac{23\!\cdots\!00}{69\!\cdots\!81}a+\frac{54\!\cdots\!70}{69\!\cdots\!81}$, $\frac{11\!\cdots\!60}{69\!\cdots\!81}a^{35}-\frac{26\!\cdots\!00}{69\!\cdots\!81}a^{34}+\frac{10\!\cdots\!00}{69\!\cdots\!81}a^{33}-\frac{23\!\cdots\!00}{69\!\cdots\!81}a^{32}+\frac{68\!\cdots\!40}{69\!\cdots\!81}a^{31}-\frac{12\!\cdots\!55}{69\!\cdots\!81}a^{30}+\frac{31\!\cdots\!60}{69\!\cdots\!81}a^{29}-\frac{56\!\cdots\!00}{69\!\cdots\!81}a^{28}+\frac{13\!\cdots\!60}{69\!\cdots\!81}a^{27}-\frac{23\!\cdots\!60}{69\!\cdots\!81}a^{26}+\frac{44\!\cdots\!60}{69\!\cdots\!81}a^{25}-\frac{73\!\cdots\!40}{69\!\cdots\!81}a^{24}+\frac{12\!\cdots\!00}{69\!\cdots\!81}a^{23}-\frac{18\!\cdots\!40}{69\!\cdots\!81}a^{22}+\frac{27\!\cdots\!00}{69\!\cdots\!81}a^{21}-\frac{42\!\cdots\!80}{69\!\cdots\!81}a^{20}+\frac{57\!\cdots\!60}{69\!\cdots\!81}a^{19}-\frac{87\!\cdots\!00}{69\!\cdots\!81}a^{18}+\frac{89\!\cdots\!60}{69\!\cdots\!81}a^{17}-\frac{12\!\cdots\!60}{69\!\cdots\!81}a^{16}+\frac{10\!\cdots\!66}{69\!\cdots\!81}a^{15}-\frac{14\!\cdots\!80}{69\!\cdots\!81}a^{14}+\frac{76\!\cdots\!00}{69\!\cdots\!81}a^{13}-\frac{15\!\cdots\!40}{69\!\cdots\!81}a^{12}+\frac{73\!\cdots\!40}{69\!\cdots\!81}a^{11}-\frac{14\!\cdots\!20}{69\!\cdots\!81}a^{10}+\frac{31\!\cdots\!80}{69\!\cdots\!81}a^{9}-\frac{36\!\cdots\!40}{69\!\cdots\!81}a^{8}-\frac{45\!\cdots\!80}{69\!\cdots\!81}a^{7}-\frac{76\!\cdots\!60}{69\!\cdots\!81}a^{6}-\frac{18\!\cdots\!08}{69\!\cdots\!81}a^{5}-\frac{20\!\cdots\!40}{69\!\cdots\!81}a^{4}+\frac{33\!\cdots\!60}{69\!\cdots\!81}a^{3}-\frac{57\!\cdots\!80}{69\!\cdots\!81}a^{2}+\frac{84\!\cdots\!80}{69\!\cdots\!81}a+\frac{13\!\cdots\!35}{69\!\cdots\!81}$, $\frac{68\!\cdots\!70}{69\!\cdots\!81}a^{35}-\frac{16\!\cdots\!75}{69\!\cdots\!81}a^{34}+\frac{66\!\cdots\!25}{69\!\cdots\!81}a^{33}-\frac{14\!\cdots\!75}{69\!\cdots\!81}a^{32}+\frac{41\!\cdots\!60}{69\!\cdots\!81}a^{31}-\frac{76\!\cdots\!75}{69\!\cdots\!81}a^{30}+\frac{19\!\cdots\!90}{69\!\cdots\!81}a^{29}-\frac{34\!\cdots\!00}{69\!\cdots\!81}a^{28}+\frac{81\!\cdots\!15}{69\!\cdots\!81}a^{27}-\frac{14\!\cdots\!40}{69\!\cdots\!81}a^{26}+\frac{27\!\cdots\!75}{69\!\cdots\!81}a^{25}-\frac{44\!\cdots\!35}{69\!\cdots\!81}a^{24}+\frac{76\!\cdots\!75}{69\!\cdots\!81}a^{23}-\frac{11\!\cdots\!10}{69\!\cdots\!81}a^{22}+\frac{17\!\cdots\!25}{69\!\cdots\!81}a^{21}-\frac{26\!\cdots\!20}{69\!\cdots\!81}a^{20}+\frac{34\!\cdots\!90}{69\!\cdots\!81}a^{19}-\frac{53\!\cdots\!25}{69\!\cdots\!81}a^{18}+\frac{54\!\cdots\!65}{69\!\cdots\!81}a^{17}-\frac{75\!\cdots\!40}{69\!\cdots\!81}a^{16}+\frac{65\!\cdots\!20}{69\!\cdots\!81}a^{15}-\frac{86\!\cdots\!70}{69\!\cdots\!81}a^{14}+\frac{46\!\cdots\!25}{69\!\cdots\!81}a^{13}-\frac{96\!\cdots\!60}{69\!\cdots\!81}a^{12}+\frac{44\!\cdots\!35}{69\!\cdots\!81}a^{11}-\frac{84\!\cdots\!01}{69\!\cdots\!81}a^{10}+\frac{18\!\cdots\!45}{69\!\cdots\!81}a^{9}-\frac{22\!\cdots\!10}{69\!\cdots\!81}a^{8}-\frac{27\!\cdots\!70}{69\!\cdots\!81}a^{7}-\frac{46\!\cdots\!65}{69\!\cdots\!81}a^{6}-\frac{12\!\cdots\!16}{69\!\cdots\!81}a^{5}-\frac{12\!\cdots\!35}{69\!\cdots\!81}a^{4}+\frac{20\!\cdots\!65}{69\!\cdots\!81}a^{3}-\frac{34\!\cdots\!70}{69\!\cdots\!81}a^{2}+\frac{51\!\cdots\!20}{69\!\cdots\!81}a+\frac{78\!\cdots\!16}{69\!\cdots\!81}$, $\frac{21\!\cdots\!75}{69\!\cdots\!81}a^{35}-\frac{51\!\cdots\!00}{69\!\cdots\!81}a^{34}+\frac{21\!\cdots\!00}{69\!\cdots\!81}a^{33}-\frac{45\!\cdots\!00}{69\!\cdots\!81}a^{32}+\frac{13\!\cdots\!00}{69\!\cdots\!81}a^{31}-\frac{24\!\cdots\!75}{69\!\cdots\!81}a^{30}+\frac{62\!\cdots\!00}{69\!\cdots\!81}a^{29}-\frac{10\!\cdots\!00}{69\!\cdots\!81}a^{28}+\frac{26\!\cdots\!00}{69\!\cdots\!81}a^{27}-\frac{45\!\cdots\!00}{69\!\cdots\!81}a^{26}+\frac{87\!\cdots\!69}{69\!\cdots\!81}a^{25}-\frac{14\!\cdots\!00}{69\!\cdots\!81}a^{24}+\frac{24\!\cdots\!00}{69\!\cdots\!81}a^{23}-\frac{36\!\cdots\!00}{69\!\cdots\!81}a^{22}+\frac{54\!\cdots\!00}{69\!\cdots\!81}a^{21}-\frac{83\!\cdots\!00}{69\!\cdots\!81}a^{20}+\frac{11\!\cdots\!00}{69\!\cdots\!81}a^{19}-\frac{17\!\cdots\!00}{69\!\cdots\!81}a^{18}+\frac{17\!\cdots\!00}{69\!\cdots\!81}a^{17}-\frac{24\!\cdots\!00}{69\!\cdots\!81}a^{16}+\frac{20\!\cdots\!80}{69\!\cdots\!81}a^{15}-\frac{27\!\cdots\!00}{69\!\cdots\!81}a^{14}+\frac{14\!\cdots\!00}{69\!\cdots\!81}a^{13}-\frac{30\!\cdots\!00}{69\!\cdots\!81}a^{12}+\frac{14\!\cdots\!00}{69\!\cdots\!81}a^{11}-\frac{27\!\cdots\!50}{69\!\cdots\!81}a^{10}+\frac{60\!\cdots\!00}{69\!\cdots\!81}a^{9}-\frac{70\!\cdots\!00}{69\!\cdots\!81}a^{8}-\frac{88\!\cdots\!00}{69\!\cdots\!81}a^{7}-\frac{14\!\cdots\!00}{69\!\cdots\!81}a^{6}-\frac{36\!\cdots\!05}{69\!\cdots\!81}a^{5}-\frac{40\!\cdots\!00}{69\!\cdots\!81}a^{4}+\frac{65\!\cdots\!00}{69\!\cdots\!81}a^{3}-\frac{11\!\cdots\!00}{69\!\cdots\!81}a^{2}+\frac{16\!\cdots\!00}{69\!\cdots\!81}a+\frac{12\!\cdots\!25}{69\!\cdots\!81}$, $\frac{10\!\cdots\!79}{69\!\cdots\!81}a^{35}-\frac{10\!\cdots\!06}{69\!\cdots\!81}a^{34}+\frac{89\!\cdots\!65}{69\!\cdots\!81}a^{33}-\frac{10\!\cdots\!55}{69\!\cdots\!81}a^{32}+\frac{53\!\cdots\!55}{69\!\cdots\!81}a^{31}-\frac{49\!\cdots\!49}{69\!\cdots\!81}a^{30}+\frac{25\!\cdots\!64}{69\!\cdots\!81}a^{29}-\frac{20\!\cdots\!26}{69\!\cdots\!81}a^{28}+\frac{10\!\cdots\!35}{69\!\cdots\!81}a^{27}-\frac{83\!\cdots\!36}{69\!\cdots\!81}a^{26}+\frac{36\!\cdots\!78}{69\!\cdots\!81}a^{25}-\frac{25\!\cdots\!12}{69\!\cdots\!81}a^{24}+\frac{10\!\cdots\!59}{69\!\cdots\!81}a^{23}-\frac{56\!\cdots\!76}{69\!\cdots\!81}a^{22}+\frac{24\!\cdots\!39}{69\!\cdots\!81}a^{21}-\frac{12\!\cdots\!48}{69\!\cdots\!81}a^{20}+\frac{51\!\cdots\!78}{69\!\cdots\!81}a^{19}-\frac{24\!\cdots\!51}{69\!\cdots\!81}a^{18}+\frac{83\!\cdots\!85}{69\!\cdots\!81}a^{17}-\frac{30\!\cdots\!17}{69\!\cdots\!81}a^{16}+\frac{11\!\cdots\!06}{69\!\cdots\!81}a^{15}-\frac{20\!\cdots\!44}{69\!\cdots\!81}a^{14}+\frac{11\!\cdots\!53}{69\!\cdots\!81}a^{13}-\frac{26\!\cdots\!06}{69\!\cdots\!81}a^{12}+\frac{10\!\cdots\!99}{69\!\cdots\!81}a^{11}-\frac{32\!\cdots\!42}{69\!\cdots\!81}a^{10}+\frac{57\!\cdots\!93}{69\!\cdots\!81}a^{9}-\frac{87\!\cdots\!18}{69\!\cdots\!81}a^{8}+\frac{25\!\cdots\!94}{69\!\cdots\!81}a^{7}+\frac{48\!\cdots\!71}{69\!\cdots\!81}a^{6}+\frac{48\!\cdots\!65}{69\!\cdots\!81}a^{5}+\frac{28\!\cdots\!12}{69\!\cdots\!81}a^{4}+\frac{11\!\cdots\!83}{69\!\cdots\!81}a^{3}-\frac{19\!\cdots\!78}{69\!\cdots\!81}a^{2}-\frac{65\!\cdots\!55}{69\!\cdots\!81}a-\frac{12\!\cdots\!29}{69\!\cdots\!81}$, $\frac{12\!\cdots\!72}{69\!\cdots\!81}a^{35}-\frac{12\!\cdots\!59}{69\!\cdots\!81}a^{34}+\frac{11\!\cdots\!52}{69\!\cdots\!81}a^{33}-\frac{12\!\cdots\!20}{69\!\cdots\!81}a^{32}+\frac{67\!\cdots\!56}{69\!\cdots\!81}a^{31}-\frac{58\!\cdots\!76}{69\!\cdots\!81}a^{30}+\frac{32\!\cdots\!36}{69\!\cdots\!81}a^{29}-\frac{24\!\cdots\!29}{69\!\cdots\!81}a^{28}+\frac{13\!\cdots\!26}{69\!\cdots\!81}a^{27}-\frac{98\!\cdots\!24}{69\!\cdots\!81}a^{26}+\frac{45\!\cdots\!40}{69\!\cdots\!81}a^{25}-\frac{30\!\cdots\!78}{69\!\cdots\!81}a^{24}+\frac{12\!\cdots\!36}{69\!\cdots\!81}a^{23}-\frac{64\!\cdots\!75}{69\!\cdots\!81}a^{22}+\frac{30\!\cdots\!47}{69\!\cdots\!81}a^{21}-\frac{13\!\cdots\!62}{69\!\cdots\!81}a^{20}+\frac{64\!\cdots\!99}{69\!\cdots\!81}a^{19}-\frac{27\!\cdots\!17}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!66}{69\!\cdots\!81}a^{17}-\frac{33\!\cdots\!80}{69\!\cdots\!81}a^{16}+\frac{14\!\cdots\!08}{69\!\cdots\!81}a^{15}-\frac{18\!\cdots\!64}{69\!\cdots\!81}a^{14}+\frac{15\!\cdots\!64}{69\!\cdots\!81}a^{13}-\frac{26\!\cdots\!93}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!04}{69\!\cdots\!81}a^{11}-\frac{33\!\cdots\!86}{69\!\cdots\!81}a^{10}+\frac{70\!\cdots\!00}{69\!\cdots\!81}a^{9}-\frac{75\!\cdots\!80}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!28}{69\!\cdots\!81}a^{7}+\frac{79\!\cdots\!02}{69\!\cdots\!81}a^{6}+\frac{64\!\cdots\!59}{69\!\cdots\!81}a^{5}+\frac{81\!\cdots\!52}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!79}{69\!\cdots\!81}a^{3}-\frac{23\!\cdots\!36}{69\!\cdots\!81}a^{2}-\frac{26\!\cdots\!06}{69\!\cdots\!81}a+\frac{46\!\cdots\!06}{69\!\cdots\!81}$, $\frac{12\!\cdots\!26}{69\!\cdots\!81}a^{35}-\frac{11\!\cdots\!94}{69\!\cdots\!81}a^{34}+\frac{11\!\cdots\!97}{69\!\cdots\!81}a^{33}-\frac{11\!\cdots\!35}{69\!\cdots\!81}a^{32}+\frac{65\!\cdots\!12}{69\!\cdots\!81}a^{31}-\frac{55\!\cdots\!36}{69\!\cdots\!81}a^{30}+\frac{31\!\cdots\!50}{69\!\cdots\!81}a^{29}-\frac{23\!\cdots\!09}{69\!\cdots\!81}a^{28}+\frac{13\!\cdots\!45}{69\!\cdots\!81}a^{27}-\frac{93\!\cdots\!28}{69\!\cdots\!81}a^{26}+\frac{44\!\cdots\!05}{69\!\cdots\!81}a^{25}-\frac{28\!\cdots\!29}{69\!\cdots\!81}a^{24}+\frac{12\!\cdots\!11}{69\!\cdots\!81}a^{23}-\frac{60\!\cdots\!21}{69\!\cdots\!81}a^{22}+\frac{30\!\cdots\!92}{69\!\cdots\!81}a^{21}-\frac{12\!\cdots\!65}{69\!\cdots\!81}a^{20}+\frac{63\!\cdots\!33}{69\!\cdots\!81}a^{19}-\frac{25\!\cdots\!22}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!95}{69\!\cdots\!81}a^{17}-\frac{31\!\cdots\!44}{69\!\cdots\!81}a^{16}+\frac{13\!\cdots\!06}{69\!\cdots\!81}a^{15}-\frac{15\!\cdots\!06}{69\!\cdots\!81}a^{14}+\frac{14\!\cdots\!49}{69\!\cdots\!81}a^{13}-\frac{22\!\cdots\!49}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!15}{69\!\cdots\!81}a^{11}-\frac{30\!\cdots\!69}{69\!\cdots\!81}a^{10}+\frac{69\!\cdots\!97}{69\!\cdots\!81}a^{9}-\frac{67\!\cdots\!26}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!06}{69\!\cdots\!81}a^{7}+\frac{80\!\cdots\!73}{69\!\cdots\!81}a^{6}+\frac{69\!\cdots\!16}{69\!\cdots\!81}a^{5}+\frac{85\!\cdots\!01}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!48}{69\!\cdots\!81}a^{3}-\frac{22\!\cdots\!78}{69\!\cdots\!81}a^{2}-\frac{28\!\cdots\!14}{69\!\cdots\!81}a-\frac{89\!\cdots\!24}{69\!\cdots\!81}$, $\frac{12\!\cdots\!02}{69\!\cdots\!81}a^{35}-\frac{12\!\cdots\!69}{69\!\cdots\!81}a^{34}+\frac{11\!\cdots\!22}{69\!\cdots\!81}a^{33}-\frac{12\!\cdots\!10}{69\!\cdots\!81}a^{32}+\frac{68\!\cdots\!12}{69\!\cdots\!81}a^{31}-\frac{60\!\cdots\!61}{69\!\cdots\!81}a^{30}+\frac{32\!\cdots\!00}{69\!\cdots\!81}a^{29}-\frac{25\!\cdots\!09}{69\!\cdots\!81}a^{28}+\frac{13\!\cdots\!20}{69\!\cdots\!81}a^{27}-\frac{10\!\cdots\!28}{69\!\cdots\!81}a^{26}+\frac{46\!\cdots\!12}{69\!\cdots\!81}a^{25}-\frac{31\!\cdots\!04}{69\!\cdots\!81}a^{24}+\frac{13\!\cdots\!86}{69\!\cdots\!81}a^{23}-\frac{67\!\cdots\!71}{69\!\cdots\!81}a^{22}+\frac{31\!\cdots\!17}{69\!\cdots\!81}a^{21}-\frac{14\!\cdots\!05}{69\!\cdots\!81}a^{20}+\frac{65\!\cdots\!83}{69\!\cdots\!81}a^{19}-\frac{29\!\cdots\!47}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!20}{69\!\cdots\!81}a^{17}-\frac{35\!\cdots\!44}{69\!\cdots\!81}a^{16}+\frac{14\!\cdots\!70}{69\!\cdots\!81}a^{15}-\frac{20\!\cdots\!56}{69\!\cdots\!81}a^{14}+\frac{15\!\cdots\!74}{69\!\cdots\!81}a^{13}-\frac{28\!\cdots\!49}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!90}{69\!\cdots\!81}a^{11}-\frac{35\!\cdots\!69}{69\!\cdots\!81}a^{10}+\frac{71\!\cdots\!22}{69\!\cdots\!81}a^{9}-\frac{81\!\cdots\!76}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!56}{69\!\cdots\!81}a^{7}+\frac{78\!\cdots\!48}{69\!\cdots\!81}a^{6}+\frac{61\!\cdots\!89}{69\!\cdots\!81}a^{5}+\frac{78\!\cdots\!26}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!73}{69\!\cdots\!81}a^{3}-\frac{23\!\cdots\!28}{69\!\cdots\!81}a^{2}-\frac{25\!\cdots\!14}{69\!\cdots\!81}a+\frac{66\!\cdots\!81}{69\!\cdots\!81}$, $\frac{12\!\cdots\!92}{69\!\cdots\!81}a^{35}-\frac{12\!\cdots\!69}{69\!\cdots\!81}a^{34}+\frac{11\!\cdots\!22}{69\!\cdots\!81}a^{33}-\frac{12\!\cdots\!10}{69\!\cdots\!81}a^{32}+\frac{69\!\cdots\!72}{69\!\cdots\!81}a^{31}-\frac{62\!\cdots\!61}{69\!\cdots\!81}a^{30}+\frac{32\!\cdots\!40}{69\!\cdots\!81}a^{29}-\frac{26\!\cdots\!09}{69\!\cdots\!81}a^{28}+\frac{14\!\cdots\!60}{69\!\cdots\!81}a^{27}-\frac{10\!\cdots\!68}{69\!\cdots\!81}a^{26}+\frac{46\!\cdots\!78}{69\!\cdots\!81}a^{25}-\frac{32\!\cdots\!64}{69\!\cdots\!81}a^{24}+\frac{13\!\cdots\!86}{69\!\cdots\!81}a^{23}-\frac{70\!\cdots\!31}{69\!\cdots\!81}a^{22}+\frac{31\!\cdots\!17}{69\!\cdots\!81}a^{21}-\frac{15\!\cdots\!35}{69\!\cdots\!81}a^{20}+\frac{66\!\cdots\!23}{69\!\cdots\!81}a^{19}-\frac{30\!\cdots\!47}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!60}{69\!\cdots\!81}a^{17}-\frac{37\!\cdots\!84}{69\!\cdots\!81}a^{16}+\frac{14\!\cdots\!90}{69\!\cdots\!81}a^{15}-\frac{22\!\cdots\!76}{69\!\cdots\!81}a^{14}+\frac{15\!\cdots\!74}{69\!\cdots\!81}a^{13}-\frac{30\!\cdots\!09}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!50}{69\!\cdots\!81}a^{11}-\frac{37\!\cdots\!80}{69\!\cdots\!81}a^{10}+\frac{71\!\cdots\!42}{69\!\cdots\!81}a^{9}-\frac{86\!\cdots\!36}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!36}{69\!\cdots\!81}a^{7}+\frac{76\!\cdots\!08}{69\!\cdots\!81}a^{6}+\frac{58\!\cdots\!69}{69\!\cdots\!81}a^{5}+\frac{75\!\cdots\!66}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!13}{69\!\cdots\!81}a^{3}-\frac{23\!\cdots\!48}{69\!\cdots\!81}a^{2}-\frac{24\!\cdots\!94}{69\!\cdots\!81}a+\frac{37\!\cdots\!83}{69\!\cdots\!81}$, $\frac{12\!\cdots\!22}{69\!\cdots\!81}a^{35}-\frac{11\!\cdots\!94}{69\!\cdots\!81}a^{34}+\frac{10\!\cdots\!97}{69\!\cdots\!81}a^{33}-\frac{11\!\cdots\!35}{69\!\cdots\!81}a^{32}+\frac{65\!\cdots\!12}{69\!\cdots\!81}a^{31}-\frac{54\!\cdots\!86}{69\!\cdots\!81}a^{30}+\frac{31\!\cdots\!50}{69\!\cdots\!81}a^{29}-\frac{22\!\cdots\!09}{69\!\cdots\!81}a^{28}+\frac{13\!\cdots\!45}{69\!\cdots\!81}a^{27}-\frac{91\!\cdots\!28}{69\!\cdots\!81}a^{26}+\frac{43\!\cdots\!03}{69\!\cdots\!81}a^{25}-\frac{27\!\cdots\!29}{69\!\cdots\!81}a^{24}+\frac{12\!\cdots\!11}{69\!\cdots\!81}a^{23}-\frac{58\!\cdots\!21}{69\!\cdots\!81}a^{22}+\frac{29\!\cdots\!92}{69\!\cdots\!81}a^{21}-\frac{12\!\cdots\!15}{69\!\cdots\!81}a^{20}+\frac{62\!\cdots\!33}{69\!\cdots\!81}a^{19}-\frac{24\!\cdots\!22}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!95}{69\!\cdots\!81}a^{17}-\frac{29\!\cdots\!44}{69\!\cdots\!81}a^{16}+\frac{13\!\cdots\!70}{69\!\cdots\!81}a^{15}-\frac{14\!\cdots\!06}{69\!\cdots\!81}a^{14}+\frac{14\!\cdots\!49}{69\!\cdots\!81}a^{13}-\frac{21\!\cdots\!49}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!15}{69\!\cdots\!81}a^{11}-\frac{29\!\cdots\!79}{69\!\cdots\!81}a^{10}+\frac{69\!\cdots\!97}{69\!\cdots\!81}a^{9}-\frac{64\!\cdots\!26}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!06}{69\!\cdots\!81}a^{7}+\frac{81\!\cdots\!73}{69\!\cdots\!81}a^{6}+\frac{71\!\cdots\!85}{69\!\cdots\!81}a^{5}+\frac{87\!\cdots\!01}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!48}{69\!\cdots\!81}a^{3}-\frac{22\!\cdots\!78}{69\!\cdots\!81}a^{2}-\frac{29\!\cdots\!14}{69\!\cdots\!81}a-\frac{40\!\cdots\!33}{69\!\cdots\!81}$, $\frac{12\!\cdots\!21}{69\!\cdots\!81}a^{35}-\frac{11\!\cdots\!79}{69\!\cdots\!81}a^{34}+\frac{11\!\cdots\!92}{69\!\cdots\!81}a^{33}-\frac{11\!\cdots\!00}{69\!\cdots\!81}a^{32}+\frac{66\!\cdots\!08}{69\!\cdots\!81}a^{31}-\frac{57\!\cdots\!52}{69\!\cdots\!81}a^{30}+\frac{31\!\cdots\!24}{69\!\cdots\!81}a^{29}-\frac{24\!\cdots\!89}{69\!\cdots\!81}a^{28}+\frac{13\!\cdots\!74}{69\!\cdots\!81}a^{27}-\frac{97\!\cdots\!92}{69\!\cdots\!81}a^{26}+\frac{45\!\cdots\!97}{69\!\cdots\!81}a^{25}-\frac{29\!\cdots\!70}{69\!\cdots\!81}a^{24}+\frac{12\!\cdots\!36}{69\!\cdots\!81}a^{23}-\frac{63\!\cdots\!07}{69\!\cdots\!81}a^{22}+\frac{30\!\cdots\!87}{69\!\cdots\!81}a^{21}-\frac{13\!\cdots\!67}{69\!\cdots\!81}a^{20}+\frac{64\!\cdots\!27}{69\!\cdots\!81}a^{19}-\frac{27\!\cdots\!77}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!34}{69\!\cdots\!81}a^{17}-\frac{33\!\cdots\!68}{69\!\cdots\!81}a^{16}+\frac{14\!\cdots\!53}{69\!\cdots\!81}a^{15}-\frac{17\!\cdots\!28}{69\!\cdots\!81}a^{14}+\frac{14\!\cdots\!84}{69\!\cdots\!81}a^{13}-\frac{25\!\cdots\!45}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!16}{69\!\cdots\!81}a^{11}-\frac{32\!\cdots\!11}{69\!\cdots\!81}a^{10}+\frac{70\!\cdots\!24}{69\!\cdots\!81}a^{9}-\frac{73\!\cdots\!12}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!04}{69\!\cdots\!81}a^{7}+\frac{79\!\cdots\!34}{69\!\cdots\!81}a^{6}+\frac{65\!\cdots\!40}{69\!\cdots\!81}a^{5}+\frac{82\!\cdots\!60}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!27}{69\!\cdots\!81}a^{3}-\frac{22\!\cdots\!00}{69\!\cdots\!81}a^{2}-\frac{27\!\cdots\!42}{69\!\cdots\!81}a-\frac{12\!\cdots\!22}{69\!\cdots\!81}$, $\frac{12\!\cdots\!97}{69\!\cdots\!81}a^{35}-\frac{12\!\cdots\!09}{69\!\cdots\!81}a^{34}+\frac{11\!\cdots\!02}{69\!\cdots\!81}a^{33}-\frac{12\!\cdots\!70}{69\!\cdots\!81}a^{32}+\frac{69\!\cdots\!76}{69\!\cdots\!81}a^{31}-\frac{62\!\cdots\!71}{69\!\cdots\!81}a^{30}+\frac{32\!\cdots\!16}{69\!\cdots\!81}a^{29}-\frac{26\!\cdots\!29}{69\!\cdots\!81}a^{28}+\frac{14\!\cdots\!56}{69\!\cdots\!81}a^{27}-\frac{10\!\cdots\!04}{69\!\cdots\!81}a^{26}+\frac{46\!\cdots\!20}{69\!\cdots\!81}a^{25}-\frac{32\!\cdots\!48}{69\!\cdots\!81}a^{24}+\frac{13\!\cdots\!86}{69\!\cdots\!81}a^{23}-\frac{70\!\cdots\!95}{69\!\cdots\!81}a^{22}+\frac{31\!\cdots\!97}{69\!\cdots\!81}a^{21}-\frac{15\!\cdots\!43}{69\!\cdots\!81}a^{20}+\frac{66\!\cdots\!79}{69\!\cdots\!81}a^{19}-\frac{30\!\cdots\!67}{69\!\cdots\!81}a^{18}+\frac{10\!\cdots\!96}{69\!\cdots\!81}a^{17}-\frac{37\!\cdots\!60}{69\!\cdots\!81}a^{16}+\frac{14\!\cdots\!42}{69\!\cdots\!81}a^{15}-\frac{22\!\cdots\!04}{69\!\cdots\!81}a^{14}+\frac{15\!\cdots\!14}{69\!\cdots\!81}a^{13}-\frac{30\!\cdots\!13}{69\!\cdots\!81}a^{12}+\frac{13\!\cdots\!74}{69\!\cdots\!81}a^{11}-\frac{37\!\cdots\!98}{69\!\cdots\!81}a^{10}+\frac{71\!\cdots\!90}{69\!\cdots\!81}a^{9}-\frac{86\!\cdots\!00}{69\!\cdots\!81}a^{8}+\frac{31\!\cdots\!88}{69\!\cdots\!81}a^{7}+\frac{76\!\cdots\!72}{69\!\cdots\!81}a^{6}+\frac{58\!\cdots\!62}{69\!\cdots\!81}a^{5}+\frac{75\!\cdots\!82}{69\!\cdots\!81}a^{4}+\frac{14\!\cdots\!09}{69\!\cdots\!81}a^{3}-\frac{23\!\cdots\!76}{69\!\cdots\!81}a^{2}-\frac{24\!\cdots\!66}{69\!\cdots\!81}a+\frac{89\!\cdots\!62}{69\!\cdots\!81}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3431432369157.3267 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 3431432369157.3267 \cdot 1417}{10\cdot\sqrt{619876750267203693326033178758188478035934269428253173828125}}\cr\approx \mathstrut & 0.143856752017006 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 9*x^34 - 10*x^33 + 54*x^32 - 49*x^31 + 257*x^30 - 206*x^29 + 1100*x^28 - 836*x^27 + 3655*x^26 - 2571*x^25 + 10339*x^24 - 5625*x^23 + 24829*x^22 - 12149*x^21 + 52298*x^20 - 24437*x^19 + 84375*x^18 - 31001*x^17 + 114806*x^16 - 20386*x^15 + 122457*x^14 - 26351*x^13 + 111183*x^12 - 31899*x^11 + 59771*x^10 - 9196*x^9 + 26744*x^8 + 4893*x^7 + 5542*x^6 + 509*x^5 + 1260*x^4 - 205*x^3 + 35*x^2 - 5*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.361.1, \(\Q(\zeta_{5})\), 6.6.16290125.1, \(\Q(\zeta_{19})^+\), 12.0.33171021564453125.1, 18.18.563362135874260093126953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36$ $36$ R ${\href{/padicField/7.12.0.1}{12} }^{3}$ ${\href{/padicField/11.3.0.1}{3} }^{12}$ $36$ $36$ R $36$ $18^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{12}$ ${\href{/padicField/37.4.0.1}{4} }^{9}$ ${\href{/padicField/41.9.0.1}{9} }^{4}$ $36$ $36$ $36$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $36$$4$$9$$27$
\(19\) Copy content Toggle raw display 19.18.16.1$x^{18} + 162 x^{17} + 11682 x^{16} + 492480 x^{15} + 13390416 x^{14} + 243982368 x^{13} + 2990277024 x^{12} + 23974071552 x^{11} + 116854153056 x^{10} + 292311592166 x^{9} + 233708309190 x^{8} + 95896505088 x^{7} + 23931351696 x^{6} + 4148844336 x^{5} + 4813362864 x^{4} + 52323118080 x^{3} + 400888193472 x^{2} + 1792784840544 x + 3563298115785$$9$$2$$16$$C_{18}$$[\ ]_{9}^{2}$
19.18.16.1$x^{18} + 162 x^{17} + 11682 x^{16} + 492480 x^{15} + 13390416 x^{14} + 243982368 x^{13} + 2990277024 x^{12} + 23974071552 x^{11} + 116854153056 x^{10} + 292311592166 x^{9} + 233708309190 x^{8} + 95896505088 x^{7} + 23931351696 x^{6} + 4148844336 x^{5} + 4813362864 x^{4} + 52323118080 x^{3} + 400888193472 x^{2} + 1792784840544 x + 3563298115785$$9$$2$$16$$C_{18}$$[\ ]_{9}^{2}$