Properties

Label 22.8.156...000.4
Degree $22$
Signature $[8, 7]$
Discriminant $-1.565\times 10^{43}$
Root discriminant \(91.91\)
Ramified primes $2,3,5,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.C_{11}:C_{10}$ (as 22T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1)
 
gp: K = bnfinit(y^22 - 19*y^20 - 395*y^18 + 615*y^16 + 20850*y^14 + 16842*y^12 - 223773*y^10 - 144525*y^8 + 284565*y^6 + 250165*y^4 + 38861*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1)
 

\( x^{22} - 19 x^{20} - 395 x^{18} + 615 x^{16} + 20850 x^{14} + 16842 x^{12} - 223773 x^{10} - 144525 x^{8} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-15646172003756569249283257910156250000000000\) \(\medspace = -\,2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(91.91\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{31/16}3^{10/11}5^{10/11}11^{4/5}\approx 305.86771353088227$
Ramified primes:   \(2\), \(3\), \(5\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}$, $\frac{1}{6}a^{11}-\frac{1}{6}a^{10}-\frac{1}{6}a^{9}-\frac{1}{6}a^{8}-\frac{1}{3}a^{7}+\frac{1}{6}a^{5}-\frac{1}{6}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a^{2}+\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{6}a^{12}-\frac{1}{6}a^{8}+\frac{1}{6}a^{6}+\frac{1}{3}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{13}-\frac{1}{6}a^{9}+\frac{1}{6}a^{7}+\frac{1}{3}a^{3}-\frac{1}{2}a$, $\frac{1}{6}a^{14}-\frac{1}{6}a^{10}-\frac{1}{6}a^{8}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{6}a^{2}-\frac{1}{3}$, $\frac{1}{6}a^{15}-\frac{1}{6}a^{10}-\frac{1}{6}a^{8}-\frac{1}{3}a^{7}-\frac{1}{2}a^{5}-\frac{1}{6}a^{4}+\frac{1}{3}a^{3}-\frac{1}{6}a^{2}+\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{18}a^{16}-\frac{1}{18}a^{14}+\frac{1}{18}a^{12}+\frac{1}{9}a^{10}+\frac{1}{18}a^{8}-\frac{2}{9}a^{6}+\frac{1}{18}a^{4}-\frac{7}{18}a^{2}+\frac{2}{9}$, $\frac{1}{36}a^{17}-\frac{1}{36}a^{16}+\frac{1}{18}a^{15}+\frac{1}{36}a^{14}-\frac{1}{18}a^{13}+\frac{1}{18}a^{12}-\frac{1}{36}a^{11}-\frac{1}{18}a^{10}-\frac{5}{36}a^{9}+\frac{1}{18}a^{8}-\frac{1}{36}a^{7}+\frac{13}{36}a^{6}-\frac{11}{36}a^{5}-\frac{1}{36}a^{4}-\frac{4}{9}a^{3}+\frac{1}{36}a^{2}+\frac{1}{36}a-\frac{7}{36}$, $\frac{1}{36}a^{18}-\frac{1}{36}a^{16}-\frac{1}{12}a^{15}+\frac{1}{36}a^{14}-\frac{1}{36}a^{12}-\frac{1}{12}a^{11}-\frac{5}{36}a^{10}-\frac{1}{12}a^{9}+\frac{5}{36}a^{8}-\frac{1}{3}a^{7}+\frac{5}{18}a^{6}+\frac{1}{6}a^{5}-\frac{13}{36}a^{4}+\frac{1}{4}a^{3}-\frac{7}{18}a^{2}-\frac{1}{3}a+\frac{1}{12}$, $\frac{1}{36}a^{19}-\frac{1}{12}a^{15}-\frac{1}{12}a^{14}-\frac{1}{12}a^{13}-\frac{1}{12}a^{12}+\frac{1}{12}a^{10}-\frac{1}{6}a^{9}+\frac{1}{4}a^{7}-\frac{1}{12}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{5}{12}a^{2}+\frac{1}{9}a-\frac{1}{4}$, $\frac{1}{39\!\cdots\!88}a^{20}+\frac{58\!\cdots\!21}{66\!\cdots\!98}a^{18}+\frac{33\!\cdots\!11}{13\!\cdots\!96}a^{16}-\frac{1}{12}a^{15}-\frac{14\!\cdots\!47}{44\!\cdots\!32}a^{14}-\frac{1}{12}a^{13}-\frac{53\!\cdots\!26}{11\!\cdots\!83}a^{12}-\frac{1}{12}a^{11}-\frac{36\!\cdots\!67}{22\!\cdots\!66}a^{10}-\frac{1}{6}a^{9}-\frac{11\!\cdots\!31}{13\!\cdots\!96}a^{8}-\frac{1}{12}a^{7}+\frac{39\!\cdots\!97}{11\!\cdots\!83}a^{6}+\frac{1}{6}a^{5}+\frac{20\!\cdots\!61}{66\!\cdots\!98}a^{4}+\frac{5}{12}a^{3}+\frac{45\!\cdots\!95}{99\!\cdots\!47}a^{2}+\frac{1}{4}a+\frac{13\!\cdots\!85}{33\!\cdots\!49}$, $\frac{1}{39\!\cdots\!88}a^{21}+\frac{58\!\cdots\!21}{66\!\cdots\!98}a^{19}-\frac{48\!\cdots\!75}{19\!\cdots\!94}a^{17}+\frac{30\!\cdots\!09}{39\!\cdots\!88}a^{15}+\frac{14\!\cdots\!15}{19\!\cdots\!94}a^{13}-\frac{1}{12}a^{12}+\frac{12\!\cdots\!75}{39\!\cdots\!88}a^{11}-\frac{1}{6}a^{10}-\frac{11\!\cdots\!19}{99\!\cdots\!47}a^{9}+\frac{1}{12}a^{8}+\frac{15\!\cdots\!71}{39\!\cdots\!88}a^{7}-\frac{5}{12}a^{6}+\frac{11\!\cdots\!83}{39\!\cdots\!88}a^{5}-\frac{1}{6}a^{4}+\frac{16\!\cdots\!01}{22\!\cdots\!66}a^{3}+\frac{1}{3}a^{2}-\frac{10\!\cdots\!55}{39\!\cdots\!88}a+\frac{5}{12}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{20\!\cdots\!17}{19\!\cdots\!94}a^{21}-\frac{12\!\cdots\!79}{66\!\cdots\!98}a^{19}-\frac{80\!\cdots\!55}{19\!\cdots\!94}a^{17}+\frac{66\!\cdots\!68}{99\!\cdots\!47}a^{15}+\frac{42\!\cdots\!29}{19\!\cdots\!94}a^{13}+\frac{15\!\cdots\!49}{99\!\cdots\!47}a^{11}-\frac{45\!\cdots\!77}{19\!\cdots\!94}a^{9}-\frac{24\!\cdots\!59}{19\!\cdots\!94}a^{7}+\frac{29\!\cdots\!24}{99\!\cdots\!47}a^{5}+\frac{22\!\cdots\!89}{99\!\cdots\!47}a^{3}+\frac{24\!\cdots\!00}{99\!\cdots\!47}a$, $\frac{19\!\cdots\!85}{99\!\cdots\!47}a^{21}-\frac{37\!\cdots\!70}{99\!\cdots\!47}a^{19}-\frac{77\!\cdots\!65}{99\!\cdots\!47}a^{17}+\frac{24\!\cdots\!21}{19\!\cdots\!94}a^{15}+\frac{41\!\cdots\!75}{99\!\cdots\!47}a^{13}+\frac{66\!\cdots\!43}{19\!\cdots\!94}a^{11}-\frac{88\!\cdots\!23}{19\!\cdots\!94}a^{9}-\frac{28\!\cdots\!69}{99\!\cdots\!47}a^{7}+\frac{55\!\cdots\!88}{99\!\cdots\!47}a^{5}+\frac{98\!\cdots\!03}{19\!\cdots\!94}a^{3}+\frac{84\!\cdots\!55}{11\!\cdots\!83}a$, $\frac{13\!\cdots\!75}{19\!\cdots\!94}a^{21}-\frac{44\!\cdots\!11}{33\!\cdots\!49}a^{19}-\frac{55\!\cdots\!11}{19\!\cdots\!94}a^{17}+\frac{41\!\cdots\!25}{99\!\cdots\!47}a^{15}+\frac{14\!\cdots\!15}{99\!\cdots\!47}a^{13}+\frac{24\!\cdots\!91}{19\!\cdots\!94}a^{11}-\frac{15\!\cdots\!39}{99\!\cdots\!47}a^{9}-\frac{10\!\cdots\!92}{99\!\cdots\!47}a^{7}+\frac{19\!\cdots\!40}{99\!\cdots\!47}a^{5}+\frac{40\!\cdots\!25}{22\!\cdots\!66}a^{3}+\frac{32\!\cdots\!03}{99\!\cdots\!47}a$, $\frac{26\!\cdots\!13}{19\!\cdots\!94}a^{20}-\frac{48\!\cdots\!19}{19\!\cdots\!94}a^{18}-\frac{10\!\cdots\!57}{19\!\cdots\!94}a^{16}+\frac{10\!\cdots\!65}{19\!\cdots\!94}a^{14}+\frac{55\!\cdots\!89}{19\!\cdots\!94}a^{12}+\frac{74\!\cdots\!55}{19\!\cdots\!94}a^{10}-\frac{29\!\cdots\!27}{99\!\cdots\!47}a^{8}-\frac{71\!\cdots\!43}{19\!\cdots\!94}a^{6}+\frac{41\!\cdots\!55}{99\!\cdots\!47}a^{4}+\frac{11\!\cdots\!71}{22\!\cdots\!66}a^{2}+\frac{82\!\cdots\!80}{99\!\cdots\!47}$, $\frac{16\!\cdots\!61}{99\!\cdots\!47}a^{21}-\frac{63\!\cdots\!07}{19\!\cdots\!94}a^{19}-\frac{65\!\cdots\!10}{99\!\cdots\!47}a^{17}+\frac{20\!\cdots\!11}{19\!\cdots\!94}a^{15}+\frac{34\!\cdots\!22}{99\!\cdots\!47}a^{13}+\frac{27\!\cdots\!26}{99\!\cdots\!47}a^{11}-\frac{74\!\cdots\!97}{19\!\cdots\!94}a^{9}-\frac{23\!\cdots\!99}{99\!\cdots\!47}a^{7}+\frac{47\!\cdots\!12}{99\!\cdots\!47}a^{5}+\frac{40\!\cdots\!75}{99\!\cdots\!47}a^{3}+\frac{12\!\cdots\!61}{19\!\cdots\!94}a$, $\frac{99\!\cdots\!73}{19\!\cdots\!94}a^{20}-\frac{18\!\cdots\!57}{19\!\cdots\!94}a^{18}-\frac{39\!\cdots\!03}{19\!\cdots\!94}a^{16}+\frac{56\!\cdots\!11}{19\!\cdots\!94}a^{14}+\frac{10\!\cdots\!96}{99\!\cdots\!47}a^{12}+\frac{19\!\cdots\!39}{19\!\cdots\!94}a^{10}-\frac{21\!\cdots\!45}{19\!\cdots\!94}a^{8}-\frac{85\!\cdots\!38}{99\!\cdots\!47}a^{6}+\frac{10\!\cdots\!60}{99\!\cdots\!47}a^{4}+\frac{30\!\cdots\!87}{19\!\cdots\!94}a^{2}+\frac{16\!\cdots\!47}{66\!\cdots\!98}$, $\frac{21\!\cdots\!95}{19\!\cdots\!94}a^{20}-\frac{44\!\cdots\!89}{22\!\cdots\!66}a^{18}-\frac{42\!\cdots\!77}{99\!\cdots\!47}a^{16}+\frac{11\!\cdots\!07}{19\!\cdots\!94}a^{14}+\frac{44\!\cdots\!75}{19\!\cdots\!94}a^{12}+\frac{21\!\cdots\!70}{99\!\cdots\!47}a^{10}-\frac{47\!\cdots\!85}{19\!\cdots\!94}a^{8}-\frac{19\!\cdots\!57}{99\!\cdots\!47}a^{6}+\frac{59\!\cdots\!33}{19\!\cdots\!94}a^{4}+\frac{22\!\cdots\!85}{66\!\cdots\!98}a^{2}+\frac{15\!\cdots\!39}{19\!\cdots\!94}$, $\frac{65\!\cdots\!23}{33\!\cdots\!49}a^{20}-\frac{38\!\cdots\!14}{99\!\cdots\!47}a^{18}-\frac{15\!\cdots\!61}{19\!\cdots\!94}a^{16}+\frac{17\!\cdots\!01}{99\!\cdots\!47}a^{14}+\frac{39\!\cdots\!77}{99\!\cdots\!47}a^{12}+\frac{13\!\cdots\!17}{19\!\cdots\!94}a^{10}-\frac{88\!\cdots\!91}{19\!\cdots\!94}a^{8}+\frac{24\!\cdots\!91}{19\!\cdots\!94}a^{6}+\frac{10\!\cdots\!17}{19\!\cdots\!94}a^{4}+\frac{13\!\cdots\!38}{99\!\cdots\!47}a^{2}-\frac{33\!\cdots\!95}{66\!\cdots\!98}$, $\frac{16\!\cdots\!39}{66\!\cdots\!98}a^{20}-\frac{97\!\cdots\!91}{19\!\cdots\!94}a^{18}-\frac{61\!\cdots\!75}{66\!\cdots\!98}a^{16}+\frac{52\!\cdots\!19}{22\!\cdots\!66}a^{14}+\frac{32\!\cdots\!73}{66\!\cdots\!98}a^{12}-\frac{34\!\cdots\!73}{66\!\cdots\!98}a^{10}-\frac{60\!\cdots\!43}{11\!\cdots\!83}a^{8}+\frac{10\!\cdots\!33}{66\!\cdots\!98}a^{6}+\frac{19\!\cdots\!62}{33\!\cdots\!49}a^{4}+\frac{10\!\cdots\!37}{66\!\cdots\!98}a^{2}+\frac{70\!\cdots\!03}{99\!\cdots\!47}$, $\frac{18\!\cdots\!56}{99\!\cdots\!47}a^{21}-\frac{33\!\cdots\!11}{39\!\cdots\!88}a^{20}-\frac{46\!\cdots\!53}{13\!\cdots\!96}a^{19}+\frac{18\!\cdots\!15}{11\!\cdots\!83}a^{18}-\frac{80\!\cdots\!52}{11\!\cdots\!83}a^{17}+\frac{12\!\cdots\!29}{39\!\cdots\!88}a^{16}+\frac{12\!\cdots\!49}{11\!\cdots\!83}a^{15}-\frac{69\!\cdots\!83}{99\!\cdots\!47}a^{14}+\frac{12\!\cdots\!82}{33\!\cdots\!49}a^{13}-\frac{68\!\cdots\!21}{39\!\cdots\!88}a^{12}+\frac{40\!\cdots\!83}{13\!\cdots\!96}a^{11}-\frac{18\!\cdots\!05}{39\!\cdots\!88}a^{10}-\frac{27\!\cdots\!99}{66\!\cdots\!98}a^{9}+\frac{77\!\cdots\!09}{39\!\cdots\!88}a^{8}-\frac{86\!\cdots\!68}{33\!\cdots\!49}a^{7}+\frac{12\!\cdots\!19}{39\!\cdots\!88}a^{6}+\frac{17\!\cdots\!54}{33\!\cdots\!49}a^{5}-\frac{24\!\cdots\!49}{99\!\cdots\!47}a^{4}+\frac{18\!\cdots\!23}{39\!\cdots\!88}a^{3}-\frac{24\!\cdots\!95}{13\!\cdots\!96}a^{2}+\frac{88\!\cdots\!27}{13\!\cdots\!96}a-\frac{17\!\cdots\!27}{39\!\cdots\!88}$, $\frac{11\!\cdots\!55}{19\!\cdots\!94}a^{21}-\frac{86\!\cdots\!04}{99\!\cdots\!47}a^{20}-\frac{21\!\cdots\!61}{19\!\cdots\!94}a^{19}+\frac{10\!\cdots\!83}{66\!\cdots\!98}a^{18}-\frac{28\!\cdots\!59}{13\!\cdots\!96}a^{17}+\frac{13\!\cdots\!61}{39\!\cdots\!88}a^{16}+\frac{81\!\cdots\!01}{22\!\cdots\!66}a^{15}-\frac{15\!\cdots\!07}{39\!\cdots\!88}a^{14}+\frac{12\!\cdots\!38}{11\!\cdots\!83}a^{13}-\frac{35\!\cdots\!15}{19\!\cdots\!94}a^{12}+\frac{10\!\cdots\!85}{13\!\cdots\!96}a^{11}-\frac{43\!\cdots\!33}{19\!\cdots\!94}a^{10}-\frac{16\!\cdots\!41}{13\!\cdots\!96}a^{9}+\frac{16\!\cdots\!59}{99\!\cdots\!47}a^{8}-\frac{90\!\cdots\!25}{13\!\cdots\!96}a^{7}+\frac{64\!\cdots\!63}{39\!\cdots\!88}a^{6}+\frac{23\!\cdots\!95}{13\!\cdots\!96}a^{5}-\frac{46\!\cdots\!31}{39\!\cdots\!88}a^{4}+\frac{14\!\cdots\!30}{99\!\cdots\!47}a^{3}-\frac{29\!\cdots\!53}{39\!\cdots\!88}a^{2}+\frac{89\!\cdots\!73}{39\!\cdots\!88}a+\frac{43\!\cdots\!41}{39\!\cdots\!88}$, $\frac{55\!\cdots\!41}{39\!\cdots\!88}a^{21}-\frac{18\!\cdots\!00}{33\!\cdots\!49}a^{20}-\frac{26\!\cdots\!35}{99\!\cdots\!47}a^{19}+\frac{42\!\cdots\!51}{39\!\cdots\!88}a^{18}-\frac{24\!\cdots\!61}{44\!\cdots\!32}a^{17}+\frac{22\!\cdots\!64}{99\!\cdots\!47}a^{16}+\frac{28\!\cdots\!51}{33\!\cdots\!49}a^{15}-\frac{36\!\cdots\!53}{99\!\cdots\!47}a^{14}+\frac{32\!\cdots\!65}{11\!\cdots\!83}a^{13}-\frac{23\!\cdots\!67}{19\!\cdots\!94}a^{12}+\frac{31\!\cdots\!63}{13\!\cdots\!96}a^{11}-\frac{34\!\cdots\!19}{39\!\cdots\!88}a^{10}-\frac{10\!\cdots\!38}{33\!\cdots\!49}a^{9}+\frac{25\!\cdots\!73}{19\!\cdots\!94}a^{8}-\frac{13\!\cdots\!07}{66\!\cdots\!98}a^{7}+\frac{15\!\cdots\!81}{19\!\cdots\!94}a^{6}+\frac{26\!\cdots\!41}{66\!\cdots\!98}a^{5}-\frac{34\!\cdots\!27}{19\!\cdots\!94}a^{4}+\frac{13\!\cdots\!61}{39\!\cdots\!88}a^{3}-\frac{60\!\cdots\!33}{39\!\cdots\!88}a^{2}+\frac{54\!\cdots\!37}{99\!\cdots\!47}a-\frac{98\!\cdots\!09}{39\!\cdots\!88}$, $\frac{39\!\cdots\!45}{99\!\cdots\!47}a^{21}-\frac{49\!\cdots\!11}{39\!\cdots\!88}a^{20}-\frac{75\!\cdots\!23}{99\!\cdots\!47}a^{19}+\frac{99\!\cdots\!01}{39\!\cdots\!88}a^{18}-\frac{15\!\cdots\!81}{99\!\cdots\!47}a^{17}+\frac{93\!\cdots\!03}{19\!\cdots\!94}a^{16}+\frac{51\!\cdots\!01}{19\!\cdots\!94}a^{15}-\frac{13\!\cdots\!34}{99\!\cdots\!47}a^{14}+\frac{32\!\cdots\!81}{39\!\cdots\!88}a^{13}-\frac{10\!\cdots\!75}{39\!\cdots\!88}a^{12}+\frac{11\!\cdots\!25}{19\!\cdots\!94}a^{11}+\frac{24\!\cdots\!87}{39\!\cdots\!88}a^{10}-\frac{35\!\cdots\!21}{39\!\cdots\!88}a^{9}+\frac{71\!\cdots\!29}{19\!\cdots\!94}a^{8}-\frac{19\!\cdots\!75}{39\!\cdots\!88}a^{7}+\frac{19\!\cdots\!87}{19\!\cdots\!94}a^{6}+\frac{11\!\cdots\!02}{99\!\cdots\!47}a^{5}-\frac{21\!\cdots\!33}{39\!\cdots\!88}a^{4}+\frac{89\!\cdots\!59}{99\!\cdots\!47}a^{3}-\frac{20\!\cdots\!45}{66\!\cdots\!98}a^{2}+\frac{38\!\cdots\!61}{39\!\cdots\!88}a+\frac{28\!\cdots\!81}{39\!\cdots\!88}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 70053485057500 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{7}\cdot 70053485057500 \cdot 1}{2\cdot\sqrt{15646172003756569249283257910156250000000000}}\cr\approx \mathstrut & 0.876384612575901 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 19*x^20 - 395*x^18 + 615*x^16 + 20850*x^14 + 16842*x^12 - 223773*x^10 - 144525*x^8 + 284565*x^6 + 250165*x^4 + 38861*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.C_{11}:C_{10}$ (as 22T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 112640
The 80 conjugacy class representatives for $C_2^{10}.C_{11}:C_{10}$
Character table for $C_2^{10}.C_{11}:C_{10}$

Intermediate fields

11.11.123610132462587890625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ R ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $22$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ $22$ ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.10.10.8$x^{10} + 4 x^{9} + 14 x^{8} + 240 x^{7} + 928 x^{6} + 4400 x^{5} + 6368 x^{4} + 13888 x^{3} - 336 x^{2} + 2432 x - 17632$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
2.10.0.1$x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(3\) Copy content Toggle raw display 3.22.20.1$x^{22} + 22 x^{21} + 242 x^{20} + 1760 x^{19} + 9460 x^{18} + 39864 x^{17} + 136488 x^{16} + 388608 x^{15} + 934560 x^{14} + 1918400 x^{13} + 3384128 x^{12} + 5149702 x^{11} + 6768322 x^{10} + 7673600 x^{9} + 7474500 x^{8} + 6209808 x^{7} + 4356528 x^{6} + 2551296 x^{5} + 1226720 x^{4} + 466400 x^{3} + 129184 x^{2} + 22528 x + 1865$$11$$2$$20$22T5$[\ ]_{11}^{10}$
\(5\) Copy content Toggle raw display 5.11.10.1$x^{11} + 5$$11$$1$$10$$C_{11}:C_5$$[\ ]_{11}^{5}$
5.11.10.1$x^{11} + 5$$11$$1$$10$$C_{11}:C_5$$[\ ]_{11}^{5}$
\(11\) Copy content Toggle raw display 11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$