Normalized defining polynomial
\( x^{22} - 19 x^{20} - 395 x^{18} + 615 x^{16} + 20850 x^{14} + 16842 x^{12} - 223773 x^{10} - 144525 x^{8} + 284565 x^{6} + 250165 x^{4} + 38861 x^{2} + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15646172003756569249283257910156250000000000=-\,2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{14} + \frac{1}{18} a^{12} + \frac{1}{9} a^{10} + \frac{1}{18} a^{8} - \frac{2}{9} a^{6} + \frac{1}{18} a^{4} - \frac{7}{18} a^{2} + \frac{2}{9}$, $\frac{1}{36} a^{17} - \frac{1}{36} a^{16} + \frac{1}{18} a^{15} + \frac{1}{36} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{36} a^{11} - \frac{1}{18} a^{10} - \frac{5}{36} a^{9} + \frac{1}{18} a^{8} - \frac{1}{36} a^{7} + \frac{13}{36} a^{6} - \frac{11}{36} a^{5} - \frac{1}{36} a^{4} - \frac{4}{9} a^{3} + \frac{1}{36} a^{2} + \frac{1}{36} a - \frac{7}{36}$, $\frac{1}{36} a^{18} - \frac{1}{36} a^{16} - \frac{1}{12} a^{15} + \frac{1}{36} a^{14} - \frac{1}{36} a^{12} - \frac{1}{12} a^{11} - \frac{5}{36} a^{10} - \frac{1}{12} a^{9} + \frac{5}{36} a^{8} - \frac{1}{3} a^{7} + \frac{5}{18} a^{6} + \frac{1}{6} a^{5} - \frac{13}{36} a^{4} + \frac{1}{4} a^{3} - \frac{7}{18} a^{2} - \frac{1}{3} a + \frac{1}{12}$, $\frac{1}{36} a^{19} - \frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{1}{4} a^{7} - \frac{1}{12} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{5}{12} a^{2} + \frac{1}{9} a - \frac{1}{4}$, $\frac{1}{396625346636612525076016188} a^{20} + \frac{581153297873064590545021}{66104224439435420846002698} a^{18} + \frac{3347938143559797428425211}{132208448878870841692005396} a^{16} - \frac{1}{12} a^{15} - \frac{1478303668483191633431847}{44069482959623613897335132} a^{14} - \frac{1}{12} a^{13} - \frac{533710856483595262696226}{11017370739905903474333783} a^{12} - \frac{1}{12} a^{11} - \frac{3601005789801083525861367}{22034741479811806948667566} a^{10} - \frac{1}{6} a^{9} - \frac{11208100826806731052172231}{132208448878870841692005396} a^{8} - \frac{1}{12} a^{7} + \frac{392336600510148328349897}{11017370739905903474333783} a^{6} + \frac{1}{6} a^{5} + \frac{20885859266492827408363961}{66104224439435420846002698} a^{4} + \frac{5}{12} a^{3} + \frac{45910709258694785135516395}{99156336659153131269004047} a^{2} + \frac{1}{4} a + \frac{13954420542070994669944685}{33052112219717710423001349}$, $\frac{1}{396625346636612525076016188} a^{21} + \frac{581153297873064590545021}{66104224439435420846002698} a^{19} - \frac{486778154613255594529075}{198312673318306262538008094} a^{17} + \frac{30764749943274889196448509}{396625346636612525076016188} a^{15} + \frac{1410575323201188745801715}{198312673318306262538008094} a^{13} - \frac{1}{12} a^{12} + \frac{12303490962921820854831875}{396625346636612525076016188} a^{11} - \frac{1}{6} a^{10} - \frac{11160418305081524157712619}{99156336659153131269004047} a^{9} + \frac{1}{12} a^{8} + \frac{157349937237142084986935471}{396625346636612525076016188} a^{7} - \frac{5}{12} a^{6} + \frac{114297784859051060975849983}{396625346636612525076016188} a^{5} - \frac{1}{6} a^{4} + \frac{1633313704227582883410701}{22034741479811806948667566} a^{3} + \frac{1}{3} a^{2} - \frac{107981221992795650819008355}{396625346636612525076016188} a + \frac{5}{12}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70053485057500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |