Normalized defining polynomial
\( x^{21} - 3 x^{20} - 9 x^{19} + 124 x^{18} - 631 x^{17} + 802 x^{16} + 1826 x^{15} - 27193 x^{14} + \cdots + 1121605 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[7, 7]$ |
| |
| Discriminant: |
\(-29731207187895151973927972800000000000000\)
\(\medspace = -\,2^{18}\cdot 5^{14}\cdot 7^{7}\cdot 41^{12}\)
|
| |
| Root discriminant: | \(84.59\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(7\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5}a^{11}+\frac{1}{5}a^{10}+\frac{1}{5}a^{9}+\frac{2}{5}a^{8}+\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{1}{5}a^{5}-\frac{1}{5}a^{4}+\frac{1}{5}a^{3}$, $\frac{1}{5}a^{12}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}-\frac{1}{5}a^{3}$, $\frac{1}{5}a^{13}+\frac{1}{5}a^{10}-\frac{1}{5}a^{9}+\frac{2}{5}a^{8}-\frac{2}{5}a^{7}-\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{1}{5}a^{4}$, $\frac{1}{5}a^{14}-\frac{2}{5}a^{10}+\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}-\frac{1}{5}a^{3}$, $\frac{1}{5}a^{15}-\frac{2}{5}a^{10}-\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}$, $\frac{1}{5}a^{16}-\frac{2}{5}a^{9}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{1}{5}a^{5}+\frac{2}{5}a^{3}$, $\frac{1}{25}a^{17}+\frac{1}{25}a^{15}-\frac{1}{25}a^{14}+\frac{2}{25}a^{13}+\frac{2}{5}a^{10}+\frac{1}{5}a^{9}+\frac{9}{25}a^{7}-\frac{1}{5}a^{6}-\frac{1}{25}a^{5}-\frac{4}{25}a^{4}+\frac{3}{25}a^{3}+\frac{1}{5}a^{2}+\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{25}a^{18}+\frac{1}{25}a^{16}-\frac{1}{25}a^{15}+\frac{2}{25}a^{14}-\frac{1}{5}a^{10}-\frac{2}{5}a^{9}-\frac{11}{25}a^{8}+\frac{2}{5}a^{7}-\frac{6}{25}a^{6}+\frac{11}{25}a^{5}-\frac{12}{25}a^{4}-\frac{1}{5}a^{3}+\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{25}a^{19}-\frac{1}{25}a^{16}+\frac{1}{25}a^{15}+\frac{1}{25}a^{14}-\frac{2}{25}a^{13}+\frac{2}{5}a^{10}-\frac{11}{25}a^{9}-\frac{1}{5}a^{8}-\frac{2}{5}a^{7}+\frac{6}{25}a^{6}-\frac{6}{25}a^{5}-\frac{6}{25}a^{4}+\frac{7}{25}a^{3}-\frac{2}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{99\cdots 75}a^{20}+\frac{99\cdots 76}{99\cdots 75}a^{19}-\frac{22\cdots 73}{19\cdots 75}a^{18}+\frac{10\cdots 09}{99\cdots 75}a^{17}-\frac{13\cdots 06}{19\cdots 75}a^{16}+\frac{76\cdots 12}{99\cdots 75}a^{15}-\frac{66\cdots 41}{99\cdots 75}a^{14}+\frac{83\cdots 33}{98\cdots 75}a^{13}-\frac{52\cdots 24}{19\cdots 75}a^{12}-\frac{77\cdots 06}{19\cdots 75}a^{11}+\frac{21\cdots 29}{99\cdots 75}a^{10}+\frac{12\cdots 69}{99\cdots 75}a^{9}-\frac{63\cdots 24}{19\cdots 75}a^{8}+\frac{18\cdots 46}{99\cdots 75}a^{7}+\frac{98\cdots 07}{19\cdots 75}a^{6}+\frac{44\cdots 38}{99\cdots 75}a^{5}+\frac{42\cdots 71}{99\cdots 75}a^{4}-\frac{12\cdots 78}{99\cdots 75}a^{3}-\frac{65\cdots 23}{19\cdots 75}a^{2}+\frac{30\cdots 66}{39\cdots 55}a-\frac{85\cdots 24}{19\cdots 75}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $5$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{41\cdots 12}{41\cdots 75}a^{20}+\frac{22\cdots 16}{41\cdots 75}a^{19}-\frac{10\cdots 44}{82\cdots 15}a^{18}-\frac{25\cdots 48}{41\cdots 75}a^{17}+\frac{28\cdots 27}{41\cdots 75}a^{16}-\frac{13\cdots 56}{41\cdots 75}a^{15}+\frac{27\cdots 36}{82\cdots 15}a^{14}+\frac{46\cdots 88}{41\cdots 75}a^{13}-\frac{11\cdots 92}{82\cdots 15}a^{12}+\frac{45\cdots 04}{82\cdots 15}a^{11}-\frac{45\cdots 28}{41\cdots 75}a^{10}+\frac{66\cdots 84}{41\cdots 75}a^{9}+\frac{11\cdots 76}{82\cdots 15}a^{8}+\frac{99\cdots 88}{41\cdots 75}a^{7}-\frac{51\cdots 52}{41\cdots 75}a^{6}+\frac{14\cdots 56}{41\cdots 75}a^{5}-\frac{45\cdots 84}{82\cdots 15}a^{4}-\frac{43\cdots 08}{41\cdots 75}a^{3}+\frac{78\cdots 96}{16\cdots 23}a^{2}+\frac{95\cdots 12}{82\cdots 15}a-\frac{18\cdots 19}{82\cdots 15}$, $\frac{18\cdots 74}{19\cdots 75}a^{20}+\frac{31\cdots 94}{19\cdots 75}a^{19}+\frac{20\cdots 31}{19\cdots 75}a^{18}-\frac{20\cdots 52}{19\cdots 75}a^{17}+\frac{91\cdots 63}{19\cdots 75}a^{16}-\frac{30\cdots 07}{19\cdots 75}a^{15}-\frac{15\cdots 70}{79\cdots 31}a^{14}+\frac{18\cdots 03}{78\cdots 31}a^{13}-\frac{29\cdots 26}{39\cdots 55}a^{12}+\frac{45\cdots 33}{39\cdots 55}a^{11}-\frac{27\cdots 91}{19\cdots 75}a^{10}-\frac{11\cdots 59}{19\cdots 75}a^{9}-\frac{10\cdots 01}{19\cdots 75}a^{8}-\frac{29\cdots 98}{19\cdots 75}a^{7}-\frac{14\cdots 03}{19\cdots 75}a^{6}+\frac{38\cdots 42}{19\cdots 75}a^{5}+\frac{13\cdots 75}{79\cdots 31}a^{4}+\frac{13\cdots 43}{39\cdots 55}a^{3}-\frac{10\cdots 69}{39\cdots 55}a^{2}+\frac{15\cdots 30}{79\cdots 31}a+\frac{61\cdots 23}{78\cdots 31}$, $\frac{19\cdots 04}{99\cdots 75}a^{20}+\frac{50\cdots 96}{99\cdots 75}a^{19}+\frac{37\cdots 92}{19\cdots 75}a^{18}-\frac{22\cdots 71}{99\cdots 75}a^{17}+\frac{22\cdots 74}{19\cdots 75}a^{16}-\frac{11\cdots 33}{99\cdots 75}a^{15}-\frac{38\cdots 51}{99\cdots 75}a^{14}+\frac{49\cdots 48}{98\cdots 75}a^{13}-\frac{38\cdots 79}{19\cdots 75}a^{12}+\frac{71\cdots 04}{19\cdots 75}a^{11}-\frac{44\cdots 16}{99\cdots 75}a^{10}-\frac{10\cdots 26}{99\cdots 75}a^{9}+\frac{22\cdots 26}{19\cdots 75}a^{8}-\frac{14\cdots 24}{99\cdots 75}a^{7}-\frac{22\cdots 73}{19\cdots 75}a^{6}+\frac{18\cdots 58}{99\cdots 75}a^{5}+\frac{34\cdots 06}{99\cdots 75}a^{4}-\frac{28\cdots 68}{99\cdots 75}a^{3}-\frac{59\cdots 68}{19\cdots 75}a^{2}+\frac{15\cdots 84}{39\cdots 55}a-\frac{50\cdots 19}{19\cdots 75}$, $\frac{56\cdots 74}{99\cdots 75}a^{20}-\frac{65\cdots 01}{99\cdots 75}a^{19}+\frac{10\cdots 33}{19\cdots 75}a^{18}+\frac{12\cdots 21}{99\cdots 75}a^{17}-\frac{18\cdots 44}{19\cdots 75}a^{16}+\frac{30\cdots 68}{99\cdots 75}a^{15}-\frac{37\cdots 64}{99\cdots 75}a^{14}-\frac{25\cdots 73}{98\cdots 75}a^{13}+\frac{37\cdots 09}{19\cdots 75}a^{12}-\frac{10\cdots 44}{19\cdots 75}a^{11}+\frac{84\cdots 21}{99\cdots 75}a^{10}-\frac{46\cdots 44}{99\cdots 75}a^{9}-\frac{65\cdots 76}{19\cdots 75}a^{8}-\frac{84\cdots 51}{99\cdots 75}a^{7}-\frac{26\cdots 27}{19\cdots 75}a^{6}-\frac{38\cdots 68}{99\cdots 75}a^{5}+\frac{20\cdots 09}{99\cdots 75}a^{4}+\frac{12\cdots 18}{99\cdots 75}a^{3}-\frac{26\cdots 47}{19\cdots 75}a^{2}-\frac{94\cdots 29}{79\cdots 31}a+\frac{13\cdots 94}{19\cdots 75}$, $\frac{55\cdots 46}{99\cdots 75}a^{20}-\frac{94\cdots 64}{99\cdots 75}a^{19}-\frac{11\cdots 09}{19\cdots 75}a^{18}+\frac{60\cdots 09}{99\cdots 75}a^{17}-\frac{10\cdots 61}{39\cdots 55}a^{16}+\frac{11\cdots 92}{99\cdots 75}a^{15}+\frac{10\cdots 24}{99\cdots 75}a^{14}-\frac{13\cdots 47}{98\cdots 75}a^{13}+\frac{88\cdots 41}{19\cdots 75}a^{12}-\frac{14\cdots 76}{19\cdots 75}a^{11}+\frac{85\cdots 34}{99\cdots 75}a^{10}+\frac{36\cdots 09}{99\cdots 75}a^{9}+\frac{44\cdots 42}{19\cdots 75}a^{8}+\frac{11\cdots 96}{99\cdots 75}a^{7}+\frac{82\cdots 16}{19\cdots 75}a^{6}-\frac{97\cdots 17}{99\cdots 75}a^{5}-\frac{72\cdots 44}{99\cdots 75}a^{4}-\frac{92\cdots 73}{99\cdots 75}a^{3}+\frac{27\cdots 02}{19\cdots 75}a^{2}-\frac{33\cdots 07}{39\cdots 55}a-\frac{68\cdots 59}{19\cdots 75}$, $\frac{90\cdots 36}{19\cdots 75}a^{20}-\frac{20\cdots 59}{19\cdots 75}a^{19}-\frac{93\cdots 07}{19\cdots 75}a^{18}+\frac{10\cdots 82}{19\cdots 75}a^{17}-\frac{49\cdots 92}{19\cdots 75}a^{16}+\frac{39\cdots 47}{19\cdots 75}a^{15}+\frac{17\cdots 27}{19\cdots 75}a^{14}-\frac{23\cdots 91}{19\cdots 75}a^{13}+\frac{16\cdots 62}{39\cdots 55}a^{12}-\frac{60\cdots 31}{79\cdots 31}a^{11}+\frac{19\cdots 54}{19\cdots 75}a^{10}+\frac{50\cdots 09}{19\cdots 75}a^{9}+\frac{20\cdots 77}{19\cdots 75}a^{8}+\frac{11\cdots 43}{19\cdots 75}a^{7}+\frac{60\cdots 17}{19\cdots 75}a^{6}-\frac{58\cdots 67}{19\cdots 75}a^{5}-\frac{15\cdots 52}{19\cdots 75}a^{4}+\frac{59\cdots 11}{19\cdots 75}a^{3}+\frac{94\cdots 58}{39\cdots 55}a^{2}-\frac{80\cdots 13}{79\cdots 31}a+\frac{20\cdots 83}{39\cdots 55}$, $\frac{19\cdots 96}{19\cdots 75}a^{20}+\frac{61\cdots 71}{19\cdots 75}a^{19}+\frac{31\cdots 93}{39\cdots 55}a^{18}-\frac{48\cdots 28}{39\cdots 55}a^{17}+\frac{12\cdots 38}{19\cdots 75}a^{16}-\frac{18\cdots 41}{19\cdots 75}a^{15}-\frac{30\cdots 71}{19\cdots 75}a^{14}+\frac{52\cdots 36}{19\cdots 75}a^{13}-\frac{44\cdots 74}{39\cdots 55}a^{12}+\frac{96\cdots 57}{39\cdots 55}a^{11}-\frac{69\cdots 44}{19\cdots 75}a^{10}-\frac{71\cdots 81}{19\cdots 75}a^{9}+\frac{12\cdots 67}{39\cdots 55}a^{8}-\frac{37\cdots 36}{39\cdots 55}a^{7}-\frac{10\cdots 33}{19\cdots 75}a^{6}+\frac{25\cdots 01}{19\cdots 75}a^{5}+\frac{23\cdots 26}{19\cdots 75}a^{4}-\frac{43\cdots 11}{19\cdots 75}a^{3}-\frac{34\cdots 87}{39\cdots 55}a^{2}+\frac{11\cdots 92}{39\cdots 55}a-\frac{13\cdots 08}{39\cdots 55}$, $\frac{91\cdots 88}{19\cdots 75}a^{20}-\frac{15\cdots 51}{19\cdots 75}a^{19}-\frac{10\cdots 24}{19\cdots 75}a^{18}+\frac{10\cdots 69}{19\cdots 75}a^{17}-\frac{89\cdots 09}{39\cdots 55}a^{16}+\frac{16\cdots 63}{19\cdots 75}a^{15}+\frac{18\cdots 73}{19\cdots 75}a^{14}-\frac{22\cdots 04}{19\cdots 75}a^{13}+\frac{14\cdots 94}{39\cdots 55}a^{12}-\frac{22\cdots 06}{39\cdots 55}a^{11}+\frac{14\cdots 82}{19\cdots 75}a^{10}+\frac{56\cdots 86}{19\cdots 75}a^{9}+\frac{56\cdots 09}{19\cdots 75}a^{8}+\frac{13\cdots 51}{19\cdots 75}a^{7}+\frac{13\cdots 06}{39\cdots 55}a^{6}-\frac{21\cdots 73}{19\cdots 75}a^{5}-\frac{16\cdots 53}{19\cdots 75}a^{4}-\frac{42\cdots 36}{19\cdots 75}a^{3}+\frac{64\cdots 97}{39\cdots 55}a^{2}-\frac{77\cdots 20}{79\cdots 31}a-\frac{17\cdots 58}{39\cdots 55}$, $\frac{52\cdots 12}{99\cdots 75}a^{20}-\frac{15\cdots 13}{99\cdots 75}a^{19}-\frac{92\cdots 86}{19\cdots 75}a^{18}+\frac{65\cdots 08}{99\cdots 75}a^{17}-\frac{66\cdots 87}{19\cdots 75}a^{16}+\frac{43\cdots 19}{99\cdots 75}a^{15}+\frac{92\cdots 58}{99\cdots 75}a^{14}-\frac{14\cdots 79}{98\cdots 75}a^{13}+\frac{11\cdots 47}{19\cdots 75}a^{12}-\frac{24\cdots 27}{19\cdots 75}a^{11}+\frac{16\cdots 48}{99\cdots 75}a^{10}+\frac{22\cdots 53}{99\cdots 75}a^{9}-\frac{26\cdots 08}{19\cdots 75}a^{8}+\frac{41\cdots 52}{99\cdots 75}a^{7}+\frac{57\cdots 24}{19\cdots 75}a^{6}-\frac{65\cdots 44}{99\cdots 75}a^{5}-\frac{76\cdots 98}{99\cdots 75}a^{4}+\frac{10\cdots 14}{99\cdots 75}a^{3}+\frac{79\cdots 24}{19\cdots 75}a^{2}-\frac{52\cdots 88}{39\cdots 55}a+\frac{28\cdots 37}{19\cdots 75}$, $\frac{45\cdots 63}{99\cdots 75}a^{20}-\frac{94\cdots 12}{99\cdots 75}a^{19}-\frac{21\cdots 58}{39\cdots 55}a^{18}+\frac{52\cdots 62}{99\cdots 75}a^{17}-\frac{46\cdots 49}{19\cdots 75}a^{16}+\frac{94\cdots 06}{99\cdots 75}a^{15}+\frac{11\cdots 12}{99\cdots 75}a^{14}-\frac{11\cdots 06}{98\cdots 75}a^{13}+\frac{77\cdots 33}{19\cdots 75}a^{12}-\frac{10\cdots 73}{19\cdots 75}a^{11}+\frac{48\cdots 02}{99\cdots 75}a^{10}+\frac{30\cdots 22}{99\cdots 75}a^{9}+\frac{22\cdots 84}{19\cdots 75}a^{8}+\frac{13\cdots 03}{99\cdots 75}a^{7}+\frac{48\cdots 42}{19\cdots 75}a^{6}-\frac{35\cdots 31}{99\cdots 75}a^{5}-\frac{13\cdots 72}{99\cdots 75}a^{4}+\frac{14\cdots 96}{99\cdots 75}a^{3}+\frac{33\cdots 91}{19\cdots 75}a^{2}+\frac{18\cdots 83}{39\cdots 55}a+\frac{13\cdots 18}{19\cdots 75}$, $\frac{81\cdots 77}{99\cdots 75}a^{20}+\frac{82\cdots 63}{99\cdots 75}a^{19}+\frac{25\cdots 89}{19\cdots 75}a^{18}-\frac{85\cdots 73}{99\cdots 75}a^{17}+\frac{60\cdots 77}{19\cdots 75}a^{16}+\frac{41\cdots 21}{99\cdots 75}a^{15}-\frac{29\cdots 68}{99\cdots 75}a^{14}+\frac{18\cdots 44}{98\cdots 75}a^{13}-\frac{90\cdots 87}{19\cdots 75}a^{12}-\frac{14\cdots 98}{19\cdots 75}a^{11}+\frac{12\cdots 67}{99\cdots 75}a^{10}-\frac{80\cdots 78}{99\cdots 75}a^{9}-\frac{16\cdots 02}{39\cdots 55}a^{8}-\frac{76\cdots 37}{99\cdots 75}a^{7}-\frac{44\cdots 74}{19\cdots 75}a^{6}+\frac{34\cdots 29}{99\cdots 75}a^{5}+\frac{42\cdots 58}{99\cdots 75}a^{4}+\frac{24\cdots 21}{99\cdots 75}a^{3}-\frac{10\cdots 24}{19\cdots 75}a^{2}-\frac{34\cdots 29}{39\cdots 55}a-\frac{47\cdots 82}{19\cdots 75}$, $\frac{60\cdots 21}{99\cdots 75}a^{20}+\frac{51\cdots 26}{99\cdots 75}a^{19}-\frac{38\cdots 54}{19\cdots 75}a^{18}-\frac{23\cdots 11}{99\cdots 75}a^{17}+\frac{12\cdots 22}{19\cdots 75}a^{16}-\frac{37\cdots 63}{99\cdots 75}a^{15}+\frac{72\cdots 84}{99\cdots 75}a^{14}-\frac{12\cdots 17}{98\cdots 75}a^{13}-\frac{26\cdots 69}{19\cdots 75}a^{12}+\frac{13\cdots 29}{19\cdots 75}a^{11}-\frac{17\cdots 41}{99\cdots 75}a^{10}+\frac{35\cdots 69}{99\cdots 75}a^{9}-\frac{33\cdots 33}{19\cdots 75}a^{8}+\frac{36\cdots 16}{99\cdots 75}a^{7}+\frac{93\cdots 59}{19\cdots 75}a^{6}+\frac{27\cdots 88}{99\cdots 75}a^{5}-\frac{62\cdots 54}{99\cdots 75}a^{4}-\frac{55\cdots 53}{99\cdots 75}a^{3}+\frac{62\cdots 27}{19\cdots 75}a^{2}-\frac{24\cdots 19}{39\cdots 55}a+\frac{11\cdots 76}{19\cdots 75}$, $\frac{12\cdots 57}{99\cdots 75}a^{20}-\frac{18\cdots 73}{99\cdots 75}a^{19}-\frac{34\cdots 58}{19\cdots 75}a^{18}+\frac{13\cdots 28}{99\cdots 75}a^{17}-\frac{10\cdots 08}{19\cdots 75}a^{16}-\frac{25\cdots 46}{99\cdots 75}a^{15}+\frac{39\cdots 73}{99\cdots 75}a^{14}-\frac{29\cdots 54}{98\cdots 75}a^{13}+\frac{16\cdots 32}{19\cdots 75}a^{12}-\frac{10\cdots 02}{19\cdots 75}a^{11}-\frac{80\cdots 97}{99\cdots 75}a^{10}+\frac{10\cdots 63}{99\cdots 75}a^{9}+\frac{20\cdots 79}{19\cdots 75}a^{8}-\frac{14\cdots 68}{99\cdots 75}a^{7}+\frac{45\cdots 21}{39\cdots 55}a^{6}-\frac{77\cdots 29}{99\cdots 75}a^{5}-\frac{45\cdots 63}{99\cdots 75}a^{4}+\frac{13\cdots 89}{99\cdots 75}a^{3}+\frac{98\cdots 54}{19\cdots 75}a^{2}-\frac{96\cdots 87}{39\cdots 55}a-\frac{88\cdots 88}{19\cdots 75}$
|
| |
| Regulator: | \( 4451604187499.273 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 4451604187499.273 \cdot 1}{2\cdot\sqrt{29731207187895151973927972800000000000000}}\cr\approx \mathstrut & 0.638777077448137 \end{aligned}\] (assuming GRH)
Galois group
$C_7^2:S_3$ (as 21T18):
| A solvable group of order 294 |
| The 20 conjugacy class representatives for $C_7^2:S_3$ |
| Character table for $C_7^2:S_3$ |
Intermediate fields
| 3.1.175.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | $ x^{14} - 7 x^{13} + 25 x^{12} + 23 x^{11} - 191 x^{10} - 721 x^{9} + 18403 x^{8} - 110198 x^{7} + 452906 x^{6} - 1297862 x^{5} + 2876330 x^{4} - 4653736 x^{3} + 5702548 x^{2} - 4378774 x + 2373928 $ |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.14.0.1}{14} }{,}\,{\href{/padicField/3.7.0.1}{7} }$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{7}$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.7.0.1}{7} }$ | ${\href{/padicField/23.3.0.1}{3} }^{7}$ | ${\href{/padicField/29.3.0.1}{3} }^{7}$ | ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.3.0.1}{3} }^{7}$ | R | ${\href{/padicField/43.3.0.1}{3} }^{7}$ | ${\href{/padicField/47.14.0.1}{14} }{,}\,{\href{/padicField/47.7.0.1}{7} }$ | ${\href{/padicField/53.7.0.1}{7} }^{3}$ | ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.21.18.1 | $x^{21} + 7 x^{19} + 7 x^{18} + 21 x^{17} + 42 x^{16} + 56 x^{15} + 105 x^{14} + 140 x^{13} + 175 x^{12} + 231 x^{11} + 245 x^{10} + 252 x^{9} + 252 x^{8} + 211 x^{7} + 168 x^{6} + 126 x^{5} + 77 x^{4} + 42 x^{3} + 21 x^{2} + 7 x + 3$ | $7$ | $3$ | $18$ | 21T2 | $$[\ ]_{7}^{3}$$ |
|
\(5\)
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(7\)
| 7.7.0.1 | $x^{7} + 6 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 7.14.7.1 | $x^{14} + 12 x^{8} + 8 x^{7} + 36 x^{2} + 48 x + 23$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ | |
|
\(41\)
| 41.7.0.1 | $x^{7} + 6 x + 35$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 41.14.12.4 | $x^{14} + 266 x^{13} + 30366 x^{12} + 1930096 x^{11} + 73890236 x^{10} + 1710174648 x^{9} + 22401114568 x^{8} + 134798826368 x^{7} + 134406687408 x^{6} + 61566287328 x^{5} + 15960290976 x^{4} + 2501404416 x^{3} + 236126016 x^{2} + 12410619 x + 281371$ | $7$ | $2$ | $12$ | $C_7 \wr C_2$ | $$[\ ]_{7}^{14}$$ |