Properties

Label 21.7.231...048.1
Degree $21$
Signature $[7, 7]$
Discriminant $-2.316\times 10^{41}$
Root discriminant \(93.27\)
Ramified primes $2,7,107$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_7^3:(C_3\times S_3)$ (as 21T40)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900)
 
gp: K = bnfinit(y^21 - 21*y^17 - 280*y^15 - 138*y^14 + 98*y^13 + 1792*y^12 + 2352*y^11 + 1008*y^10 + 13279*y^9 - 44576*y^8 + 4321*y^7 + 142296*y^6 - 106484*y^5 + 32928*y^4 + 355376*y^3 - 154252*y^2 - 254912*y + 83900, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900)
 

\( x^{21} - 21 x^{17} - 280 x^{15} - 138 x^{14} + 98 x^{13} + 1792 x^{12} + 2352 x^{11} + 1008 x^{10} + \cdots + 83900 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[7, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-231636832837360510908018449295052404602048\) \(\medspace = -\,2^{6}\cdot 7^{30}\cdot 107^{7}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(93.27\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(7\), \(107\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-107}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}$, $\frac{1}{2122}a^{18}-\frac{101}{2122}a^{17}-\frac{83}{1061}a^{16}-\frac{140}{1061}a^{15}-\frac{51}{2122}a^{14}-\frac{239}{2122}a^{13}+\frac{177}{1061}a^{12}+\frac{73}{2122}a^{11}+\frac{479}{2122}a^{10}-\frac{885}{2122}a^{9}-\frac{17}{2122}a^{8}-\frac{276}{1061}a^{7}-\frac{233}{2122}a^{6}-\frac{201}{1061}a^{5}-\frac{469}{2122}a^{4}+\frac{169}{1061}a^{3}+\frac{279}{1061}a^{2}+\frac{205}{1061}a+\frac{7}{1061}$, $\frac{1}{2122}a^{19}+\frac{243}{2122}a^{17}-\frac{35}{1061}a^{16}+\frac{158}{1061}a^{15}-\frac{85}{2122}a^{14}-\frac{443}{2122}a^{13}-\frac{247}{2122}a^{12}+\frac{425}{2122}a^{11}-\frac{251}{2122}a^{10}+\frac{783}{2122}a^{9}-\frac{147}{2122}a^{8}-\frac{813}{2122}a^{7}-\frac{593}{2122}a^{6}+\frac{154}{1061}a^{5}-\frac{347}{2122}a^{4}+\frac{372}{1061}a^{3}-\frac{263}{1061}a^{2}-\frac{508}{1061}a-\frac{354}{1061}$, $\frac{1}{21\!\cdots\!76}a^{20}-\frac{22\!\cdots\!67}{21\!\cdots\!76}a^{19}+\frac{33\!\cdots\!41}{21\!\cdots\!76}a^{18}-\frac{15\!\cdots\!87}{21\!\cdots\!76}a^{17}+\frac{83\!\cdots\!83}{52\!\cdots\!44}a^{16}-\frac{10\!\cdots\!27}{52\!\cdots\!44}a^{15}+\frac{12\!\cdots\!25}{52\!\cdots\!44}a^{14}+\frac{22\!\cdots\!37}{10\!\cdots\!88}a^{13}+\frac{11\!\cdots\!07}{52\!\cdots\!44}a^{12}-\frac{10\!\cdots\!43}{52\!\cdots\!44}a^{11}+\frac{16\!\cdots\!07}{52\!\cdots\!44}a^{10}-\frac{10\!\cdots\!65}{31\!\cdots\!32}a^{9}-\frac{14\!\cdots\!93}{21\!\cdots\!76}a^{8}-\frac{42\!\cdots\!17}{21\!\cdots\!76}a^{7}-\frac{19\!\cdots\!17}{52\!\cdots\!44}a^{6}-\frac{15\!\cdots\!89}{52\!\cdots\!44}a^{5}-\frac{51\!\cdots\!83}{26\!\cdots\!22}a^{4}+\frac{12\!\cdots\!08}{13\!\cdots\!11}a^{3}-\frac{87\!\cdots\!61}{13\!\cdots\!11}a^{2}+\frac{11\!\cdots\!29}{52\!\cdots\!44}a+\frac{23\!\cdots\!05}{52\!\cdots\!44}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{15\!\cdots\!95}{19\!\cdots\!16}a^{20}-\frac{13\!\cdots\!29}{19\!\cdots\!16}a^{19}+\frac{11\!\cdots\!99}{19\!\cdots\!16}a^{18}-\frac{14\!\cdots\!09}{19\!\cdots\!16}a^{17}-\frac{79\!\cdots\!15}{49\!\cdots\!04}a^{16}+\frac{71\!\cdots\!33}{49\!\cdots\!04}a^{15}-\frac{11\!\cdots\!87}{49\!\cdots\!04}a^{14}+\frac{99\!\cdots\!35}{99\!\cdots\!08}a^{13}+\frac{30\!\cdots\!51}{49\!\cdots\!04}a^{12}+\frac{70\!\cdots\!91}{49\!\cdots\!04}a^{11}+\frac{38\!\cdots\!95}{49\!\cdots\!04}a^{10}-\frac{42\!\cdots\!17}{29\!\cdots\!12}a^{9}+\frac{18\!\cdots\!65}{19\!\cdots\!16}a^{8}-\frac{89\!\cdots\!51}{19\!\cdots\!16}a^{7}+\frac{19\!\cdots\!17}{49\!\cdots\!04}a^{6}+\frac{36\!\cdots\!31}{49\!\cdots\!04}a^{5}-\frac{16\!\cdots\!86}{12\!\cdots\!51}a^{4}+\frac{23\!\cdots\!40}{12\!\cdots\!51}a^{3}+\frac{10\!\cdots\!97}{12\!\cdots\!51}a^{2}-\frac{12\!\cdots\!25}{49\!\cdots\!04}a+\frac{46\!\cdots\!67}{49\!\cdots\!04}$, $\frac{24\!\cdots\!87}{10\!\cdots\!88}a^{20}-\frac{29\!\cdots\!49}{10\!\cdots\!88}a^{19}+\frac{32\!\cdots\!07}{10\!\cdots\!88}a^{18}-\frac{54\!\cdots\!33}{10\!\cdots\!88}a^{17}-\frac{11\!\cdots\!23}{26\!\cdots\!22}a^{16}+\frac{60\!\cdots\!66}{13\!\cdots\!11}a^{15}-\frac{92\!\cdots\!29}{13\!\cdots\!11}a^{14}+\frac{29\!\cdots\!57}{52\!\cdots\!44}a^{13}-\frac{83\!\cdots\!67}{26\!\cdots\!22}a^{12}+\frac{67\!\cdots\!26}{13\!\cdots\!11}a^{11}+\frac{57\!\cdots\!99}{26\!\cdots\!22}a^{10}+\frac{30\!\cdots\!39}{77\!\cdots\!83}a^{9}+\frac{24\!\cdots\!57}{10\!\cdots\!88}a^{8}-\frac{14\!\cdots\!03}{10\!\cdots\!88}a^{7}+\frac{39\!\cdots\!81}{26\!\cdots\!22}a^{6}+\frac{33\!\cdots\!05}{26\!\cdots\!22}a^{5}-\frac{88\!\cdots\!27}{26\!\cdots\!22}a^{4}+\frac{64\!\cdots\!06}{13\!\cdots\!11}a^{3}+\frac{50\!\cdots\!04}{13\!\cdots\!11}a^{2}-\frac{24\!\cdots\!31}{26\!\cdots\!22}a-\frac{14\!\cdots\!79}{26\!\cdots\!22}$, $\frac{36\!\cdots\!95}{10\!\cdots\!88}a^{20}+\frac{30\!\cdots\!87}{10\!\cdots\!88}a^{19}+\frac{22\!\cdots\!19}{10\!\cdots\!88}a^{18}+\frac{25\!\cdots\!15}{10\!\cdots\!88}a^{17}-\frac{93\!\cdots\!70}{13\!\cdots\!11}a^{16}-\frac{15\!\cdots\!39}{26\!\cdots\!22}a^{15}-\frac{13\!\cdots\!90}{13\!\cdots\!11}a^{14}-\frac{69\!\cdots\!37}{52\!\cdots\!44}a^{13}-\frac{90\!\cdots\!58}{13\!\cdots\!11}a^{12}+\frac{71\!\cdots\!75}{13\!\cdots\!11}a^{11}+\frac{33\!\cdots\!01}{26\!\cdots\!22}a^{10}+\frac{10\!\cdots\!21}{77\!\cdots\!83}a^{9}+\frac{59\!\cdots\!25}{10\!\cdots\!88}a^{8}-\frac{11\!\cdots\!15}{10\!\cdots\!88}a^{7}-\frac{99\!\cdots\!93}{13\!\cdots\!11}a^{6}+\frac{60\!\cdots\!45}{13\!\cdots\!11}a^{5}-\frac{67\!\cdots\!59}{26\!\cdots\!22}a^{4}+\frac{18\!\cdots\!78}{13\!\cdots\!11}a^{3}+\frac{17\!\cdots\!98}{13\!\cdots\!11}a^{2}+\frac{12\!\cdots\!21}{26\!\cdots\!22}a-\frac{17\!\cdots\!39}{26\!\cdots\!22}$, $\frac{79\!\cdots\!55}{21\!\cdots\!76}a^{20}+\frac{14\!\cdots\!11}{21\!\cdots\!76}a^{19}+\frac{51\!\cdots\!71}{21\!\cdots\!76}a^{18}+\frac{11\!\cdots\!71}{21\!\cdots\!76}a^{17}-\frac{40\!\cdots\!43}{52\!\cdots\!44}a^{16}-\frac{76\!\cdots\!27}{52\!\cdots\!44}a^{15}-\frac{58\!\cdots\!53}{52\!\cdots\!44}a^{14}-\frac{27\!\cdots\!57}{10\!\cdots\!88}a^{13}-\frac{70\!\cdots\!33}{52\!\cdots\!44}a^{12}+\frac{29\!\cdots\!61}{52\!\cdots\!44}a^{11}+\frac{10\!\cdots\!01}{52\!\cdots\!44}a^{10}+\frac{74\!\cdots\!73}{31\!\cdots\!32}a^{9}+\frac{15\!\cdots\!41}{21\!\cdots\!76}a^{8}-\frac{11\!\cdots\!47}{21\!\cdots\!76}a^{7}-\frac{13\!\cdots\!65}{52\!\cdots\!44}a^{6}+\frac{28\!\cdots\!07}{52\!\cdots\!44}a^{5}+\frac{11\!\cdots\!95}{26\!\cdots\!22}a^{4}-\frac{41\!\cdots\!73}{13\!\cdots\!11}a^{3}+\frac{26\!\cdots\!41}{13\!\cdots\!11}a^{2}+\frac{88\!\cdots\!47}{52\!\cdots\!44}a-\frac{44\!\cdots\!49}{52\!\cdots\!44}$, $\frac{24\!\cdots\!41}{52\!\cdots\!44}a^{20}+\frac{17\!\cdots\!45}{52\!\cdots\!44}a^{19}+\frac{42\!\cdots\!97}{52\!\cdots\!44}a^{18}-\frac{33\!\cdots\!63}{52\!\cdots\!44}a^{17}-\frac{10\!\cdots\!98}{13\!\cdots\!11}a^{16}-\frac{10\!\cdots\!02}{13\!\cdots\!11}a^{15}-\frac{37\!\cdots\!39}{26\!\cdots\!22}a^{14}-\frac{38\!\cdots\!41}{26\!\cdots\!22}a^{13}-\frac{33\!\cdots\!38}{13\!\cdots\!11}a^{12}+\frac{12\!\cdots\!54}{13\!\cdots\!11}a^{11}+\frac{35\!\cdots\!31}{26\!\cdots\!22}a^{10}+\frac{21\!\cdots\!79}{77\!\cdots\!83}a^{9}+\frac{35\!\cdots\!49}{52\!\cdots\!44}a^{8}-\frac{73\!\cdots\!99}{52\!\cdots\!44}a^{7}-\frac{28\!\cdots\!77}{26\!\cdots\!22}a^{6}+\frac{70\!\cdots\!07}{26\!\cdots\!22}a^{5}+\frac{65\!\cdots\!37}{13\!\cdots\!11}a^{4}+\frac{11\!\cdots\!39}{13\!\cdots\!11}a^{3}+\frac{11\!\cdots\!97}{13\!\cdots\!11}a^{2}+\frac{26\!\cdots\!98}{13\!\cdots\!11}a-\frac{99\!\cdots\!02}{13\!\cdots\!11}$, $\frac{61\!\cdots\!61}{21\!\cdots\!76}a^{20}+\frac{38\!\cdots\!49}{21\!\cdots\!76}a^{19}-\frac{26\!\cdots\!63}{21\!\cdots\!76}a^{18}+\frac{45\!\cdots\!93}{21\!\cdots\!76}a^{17}-\frac{32\!\cdots\!15}{52\!\cdots\!44}a^{16}-\frac{18\!\cdots\!23}{52\!\cdots\!44}a^{15}-\frac{41\!\cdots\!71}{52\!\cdots\!44}a^{14}-\frac{10\!\cdots\!63}{10\!\cdots\!88}a^{13}+\frac{21\!\cdots\!39}{52\!\cdots\!44}a^{12}+\frac{25\!\cdots\!33}{52\!\cdots\!44}a^{11}+\frac{53\!\cdots\!39}{52\!\cdots\!44}a^{10}+\frac{13\!\cdots\!83}{31\!\cdots\!32}a^{9}+\frac{89\!\cdots\!31}{21\!\cdots\!76}a^{8}-\frac{22\!\cdots\!25}{21\!\cdots\!76}a^{7}-\frac{41\!\cdots\!25}{52\!\cdots\!44}a^{6}+\frac{26\!\cdots\!67}{52\!\cdots\!44}a^{5}-\frac{22\!\cdots\!08}{13\!\cdots\!11}a^{4}-\frac{22\!\cdots\!80}{13\!\cdots\!11}a^{3}+\frac{17\!\cdots\!92}{13\!\cdots\!11}a^{2}+\frac{19\!\cdots\!21}{52\!\cdots\!44}a-\frac{54\!\cdots\!99}{52\!\cdots\!44}$, $\frac{35\!\cdots\!83}{21\!\cdots\!76}a^{20}+\frac{38\!\cdots\!35}{21\!\cdots\!76}a^{19}+\frac{12\!\cdots\!87}{21\!\cdots\!76}a^{18}-\frac{13\!\cdots\!57}{21\!\cdots\!76}a^{17}-\frac{18\!\cdots\!75}{52\!\cdots\!44}a^{16}-\frac{30\!\cdots\!39}{52\!\cdots\!44}a^{15}-\frac{25\!\cdots\!35}{52\!\cdots\!44}a^{14}-\frac{29\!\cdots\!93}{10\!\cdots\!88}a^{13}-\frac{18\!\cdots\!03}{52\!\cdots\!44}a^{12}+\frac{16\!\cdots\!19}{52\!\cdots\!44}a^{11}+\frac{21\!\cdots\!07}{52\!\cdots\!44}a^{10}+\frac{11\!\cdots\!45}{31\!\cdots\!32}a^{9}+\frac{47\!\cdots\!29}{21\!\cdots\!76}a^{8}-\frac{15\!\cdots\!95}{21\!\cdots\!76}a^{7}+\frac{21\!\cdots\!11}{52\!\cdots\!44}a^{6}+\frac{11\!\cdots\!13}{52\!\cdots\!44}a^{5}-\frac{31\!\cdots\!99}{26\!\cdots\!22}a^{4}+\frac{84\!\cdots\!32}{13\!\cdots\!11}a^{3}+\frac{71\!\cdots\!77}{13\!\cdots\!11}a^{2}-\frac{46\!\cdots\!17}{52\!\cdots\!44}a-\frac{21\!\cdots\!41}{52\!\cdots\!44}$, $\frac{50\!\cdots\!09}{21\!\cdots\!76}a^{20}-\frac{77\!\cdots\!35}{21\!\cdots\!76}a^{19}+\frac{91\!\cdots\!81}{21\!\cdots\!76}a^{18}-\frac{11\!\cdots\!75}{21\!\cdots\!76}a^{17}-\frac{23\!\cdots\!87}{52\!\cdots\!44}a^{16}+\frac{37\!\cdots\!93}{52\!\cdots\!44}a^{15}-\frac{39\!\cdots\!17}{52\!\cdots\!44}a^{14}+\frac{85\!\cdots\!65}{10\!\cdots\!88}a^{13}-\frac{30\!\cdots\!35}{52\!\cdots\!44}a^{12}+\frac{25\!\cdots\!51}{52\!\cdots\!44}a^{11}-\frac{82\!\cdots\!75}{52\!\cdots\!44}a^{10}+\frac{56\!\cdots\!45}{31\!\cdots\!32}a^{9}+\frac{58\!\cdots\!39}{21\!\cdots\!76}a^{8}-\frac{32\!\cdots\!49}{21\!\cdots\!76}a^{7}+\frac{12\!\cdots\!35}{52\!\cdots\!44}a^{6}+\frac{30\!\cdots\!47}{52\!\cdots\!44}a^{5}-\frac{58\!\cdots\!93}{13\!\cdots\!11}a^{4}+\frac{98\!\cdots\!20}{13\!\cdots\!11}a^{3}-\frac{16\!\cdots\!73}{13\!\cdots\!11}a^{2}-\frac{25\!\cdots\!31}{52\!\cdots\!44}a+\frac{10\!\cdots\!49}{52\!\cdots\!44}$, $\frac{41\!\cdots\!89}{21\!\cdots\!76}a^{20}+\frac{75\!\cdots\!49}{21\!\cdots\!76}a^{19}-\frac{31\!\cdots\!55}{21\!\cdots\!76}a^{18}-\frac{10\!\cdots\!19}{21\!\cdots\!76}a^{17}-\frac{29\!\cdots\!25}{52\!\cdots\!44}a^{16}-\frac{15\!\cdots\!09}{52\!\cdots\!44}a^{15}-\frac{30\!\cdots\!89}{52\!\cdots\!44}a^{14}-\frac{36\!\cdots\!23}{10\!\cdots\!88}a^{13}+\frac{36\!\cdots\!83}{52\!\cdots\!44}a^{12}+\frac{28\!\cdots\!27}{52\!\cdots\!44}a^{11}+\frac{53\!\cdots\!47}{52\!\cdots\!44}a^{10}+\frac{23\!\cdots\!39}{31\!\cdots\!32}a^{9}+\frac{60\!\cdots\!91}{21\!\cdots\!76}a^{8}-\frac{21\!\cdots\!89}{21\!\cdots\!76}a^{7}-\frac{30\!\cdots\!83}{52\!\cdots\!44}a^{6}+\frac{11\!\cdots\!37}{52\!\cdots\!44}a^{5}-\frac{44\!\cdots\!85}{26\!\cdots\!22}a^{4}+\frac{16\!\cdots\!23}{13\!\cdots\!11}a^{3}+\frac{97\!\cdots\!17}{13\!\cdots\!11}a^{2}-\frac{54\!\cdots\!19}{52\!\cdots\!44}a-\frac{21\!\cdots\!87}{52\!\cdots\!44}$, $\frac{11\!\cdots\!07}{10\!\cdots\!88}a^{20}-\frac{53\!\cdots\!49}{10\!\cdots\!88}a^{19}+\frac{10\!\cdots\!51}{10\!\cdots\!88}a^{18}-\frac{13\!\cdots\!29}{10\!\cdots\!88}a^{17}-\frac{53\!\cdots\!87}{26\!\cdots\!22}a^{16}+\frac{10\!\cdots\!51}{13\!\cdots\!11}a^{15}-\frac{77\!\cdots\!43}{24\!\cdots\!02}a^{14}+\frac{10\!\cdots\!11}{52\!\cdots\!44}a^{13}-\frac{37\!\cdots\!73}{26\!\cdots\!22}a^{12}+\frac{27\!\cdots\!55}{13\!\cdots\!11}a^{11}+\frac{33\!\cdots\!79}{26\!\cdots\!22}a^{10}+\frac{32\!\cdots\!01}{15\!\cdots\!66}a^{9}+\frac{13\!\cdots\!57}{10\!\cdots\!88}a^{8}-\frac{54\!\cdots\!23}{10\!\cdots\!88}a^{7}+\frac{98\!\cdots\!57}{26\!\cdots\!22}a^{6}+\frac{11\!\cdots\!37}{13\!\cdots\!11}a^{5}-\frac{26\!\cdots\!39}{26\!\cdots\!22}a^{4}+\frac{15\!\cdots\!75}{13\!\cdots\!11}a^{3}+\frac{28\!\cdots\!95}{13\!\cdots\!11}a^{2}-\frac{31\!\cdots\!05}{26\!\cdots\!22}a-\frac{34\!\cdots\!83}{26\!\cdots\!22}$, $\frac{18\!\cdots\!71}{52\!\cdots\!44}a^{20}-\frac{32\!\cdots\!21}{52\!\cdots\!44}a^{19}+\frac{24\!\cdots\!71}{52\!\cdots\!44}a^{18}-\frac{79\!\cdots\!73}{52\!\cdots\!44}a^{17}-\frac{14\!\cdots\!35}{26\!\cdots\!22}a^{16}-\frac{45\!\cdots\!79}{26\!\cdots\!22}a^{15}-\frac{26\!\cdots\!73}{26\!\cdots\!22}a^{14}-\frac{17\!\cdots\!10}{13\!\cdots\!11}a^{13}-\frac{13\!\cdots\!92}{13\!\cdots\!11}a^{12}+\frac{26\!\cdots\!85}{26\!\cdots\!22}a^{11}+\frac{11\!\cdots\!35}{26\!\cdots\!22}a^{10}+\frac{25\!\cdots\!45}{15\!\cdots\!66}a^{9}+\frac{56\!\cdots\!47}{52\!\cdots\!44}a^{8}-\frac{73\!\cdots\!63}{52\!\cdots\!44}a^{7}+\frac{35\!\cdots\!36}{13\!\cdots\!11}a^{6}+\frac{73\!\cdots\!25}{26\!\cdots\!22}a^{5}+\frac{52\!\cdots\!33}{26\!\cdots\!22}a^{4}+\frac{22\!\cdots\!26}{13\!\cdots\!11}a^{3}-\frac{13\!\cdots\!75}{13\!\cdots\!11}a^{2}-\frac{35\!\cdots\!07}{13\!\cdots\!11}a+\frac{14\!\cdots\!12}{13\!\cdots\!11}$, $\frac{88\!\cdots\!91}{52\!\cdots\!44}a^{20}-\frac{27\!\cdots\!89}{52\!\cdots\!44}a^{19}+\frac{10\!\cdots\!33}{52\!\cdots\!44}a^{18}-\frac{34\!\cdots\!73}{52\!\cdots\!44}a^{17}-\frac{36\!\cdots\!56}{13\!\cdots\!11}a^{16}-\frac{13\!\cdots\!22}{13\!\cdots\!11}a^{15}-\frac{62\!\cdots\!01}{13\!\cdots\!11}a^{14}+\frac{79\!\cdots\!72}{13\!\cdots\!11}a^{13}-\frac{96\!\cdots\!13}{26\!\cdots\!22}a^{12}+\frac{12\!\cdots\!67}{26\!\cdots\!22}a^{11}+\frac{22\!\cdots\!38}{13\!\cdots\!11}a^{10}+\frac{47\!\cdots\!10}{77\!\cdots\!83}a^{9}+\frac{36\!\cdots\!31}{52\!\cdots\!44}a^{8}-\frac{37\!\cdots\!27}{52\!\cdots\!44}a^{7}+\frac{36\!\cdots\!92}{13\!\cdots\!11}a^{6}+\frac{18\!\cdots\!00}{13\!\cdots\!11}a^{5}+\frac{87\!\cdots\!61}{26\!\cdots\!22}a^{4}+\frac{92\!\cdots\!94}{13\!\cdots\!11}a^{3}+\frac{10\!\cdots\!62}{13\!\cdots\!11}a^{2}-\frac{17\!\cdots\!33}{13\!\cdots\!11}a-\frac{20\!\cdots\!08}{13\!\cdots\!11}$, $\frac{21\!\cdots\!45}{21\!\cdots\!76}a^{20}-\frac{58\!\cdots\!51}{21\!\cdots\!76}a^{19}+\frac{57\!\cdots\!33}{21\!\cdots\!76}a^{18}-\frac{10\!\cdots\!39}{21\!\cdots\!76}a^{17}-\frac{80\!\cdots\!03}{52\!\cdots\!44}a^{16}+\frac{26\!\cdots\!31}{52\!\cdots\!44}a^{15}-\frac{17\!\cdots\!05}{52\!\cdots\!44}a^{14}+\frac{77\!\cdots\!93}{10\!\cdots\!88}a^{13}-\frac{19\!\cdots\!61}{52\!\cdots\!44}a^{12}+\frac{14\!\cdots\!83}{52\!\cdots\!44}a^{11}-\frac{18\!\cdots\!97}{52\!\cdots\!44}a^{10}+\frac{22\!\cdots\!37}{31\!\cdots\!32}a^{9}+\frac{13\!\cdots\!35}{21\!\cdots\!76}a^{8}-\frac{16\!\cdots\!93}{21\!\cdots\!76}a^{7}+\frac{81\!\cdots\!31}{52\!\cdots\!44}a^{6}-\frac{25\!\cdots\!45}{52\!\cdots\!44}a^{5}-\frac{55\!\cdots\!69}{26\!\cdots\!22}a^{4}+\frac{45\!\cdots\!96}{13\!\cdots\!11}a^{3}-\frac{28\!\cdots\!47}{13\!\cdots\!11}a^{2}-\frac{20\!\cdots\!75}{52\!\cdots\!44}a+\frac{34\!\cdots\!17}{52\!\cdots\!44}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13512231302100 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 13512231302100 \cdot 1}{2\cdot\sqrt{231636832837360510908018449295052404602048}}\cr\approx \mathstrut & 0.694644040655394 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 21*x^17 - 280*x^15 - 138*x^14 + 98*x^13 + 1792*x^12 + 2352*x^11 + 1008*x^10 + 13279*x^9 - 44576*x^8 + 4321*x^7 + 142296*x^6 - 106484*x^5 + 32928*x^4 + 355376*x^3 - 154252*x^2 - 254912*x + 83900);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7^3:(C_3\times S_3)$ (as 21T40):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6174
The 60 conjugacy class representatives for $C_7^3:(C_3\times S_3)$
Character table for $C_7^3:(C_3\times S_3)$

Intermediate fields

3.1.107.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 21 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: 21.7.8064534907239574094801006114055662600192.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $21$ ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ R $21$ $21$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $21$ $21$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $21$ $21$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.3.0.1}{3} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ $21$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.6.0.1$x^{6} + x^{4} + x^{3} + x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
2.6.0.1$x^{6} + x^{4} + x^{3} + x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
\(7\) Copy content Toggle raw display 7.7.10.3$x^{7} + 14 x^{4} + 7$$7$$1$$10$$C_7:C_3$$[5/3]_{3}$
7.14.20.2$x^{14} - 84 x^{12} - 196 x^{11} - 882 x^{10} - 588 x^{9} + 2254 x^{8} + 14 x^{7} - 588 x^{5} - 1372 x^{4} + 49$$7$$2$$20$14T14$[5/3, 5/3]_{3}^{2}$
\(107\) Copy content Toggle raw display $\Q_{107}$$x + 105$$1$$1$$0$Trivial$[\ ]$
107.2.1.2$x^{2} + 107$$2$$1$$1$$C_2$$[\ ]_{2}$
107.3.0.1$x^{3} + 5 x + 105$$1$$3$$0$$C_3$$[\ ]^{3}$
107.3.0.1$x^{3} + 5 x + 105$$1$$3$$0$$C_3$$[\ ]^{3}$
107.6.3.2$x^{6} + 331 x^{4} + 210 x^{3} + 34372 x^{2} - 66360 x + 1124253$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
107.6.3.2$x^{6} + 331 x^{4} + 210 x^{3} + 34372 x^{2} - 66360 x + 1124253$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$