Normalized defining polynomial
\( x^{21} - 21 x^{17} - 280 x^{15} - 138 x^{14} + 98 x^{13} + 1792 x^{12} + 2352 x^{11} + 1008 x^{10} + 13279 x^{9} - 44576 x^{8} + 4321 x^{7} + 142296 x^{6} - 106484 x^{5} + 32928 x^{4} + 355376 x^{3} - 154252 x^{2} - 254912 x + 83900 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-231636832837360510908018449295052404602048=-\,2^{6}\cdot 7^{30}\cdot 107^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2122} a^{18} - \frac{101}{2122} a^{17} - \frac{83}{1061} a^{16} - \frac{140}{1061} a^{15} - \frac{51}{2122} a^{14} - \frac{239}{2122} a^{13} + \frac{177}{1061} a^{12} + \frac{73}{2122} a^{11} + \frac{479}{2122} a^{10} - \frac{885}{2122} a^{9} - \frac{17}{2122} a^{8} - \frac{276}{1061} a^{7} - \frac{233}{2122} a^{6} - \frac{201}{1061} a^{5} - \frac{469}{2122} a^{4} + \frac{169}{1061} a^{3} + \frac{279}{1061} a^{2} + \frac{205}{1061} a + \frac{7}{1061}$, $\frac{1}{2122} a^{19} + \frac{243}{2122} a^{17} - \frac{35}{1061} a^{16} + \frac{158}{1061} a^{15} - \frac{85}{2122} a^{14} - \frac{443}{2122} a^{13} - \frac{247}{2122} a^{12} + \frac{425}{2122} a^{11} - \frac{251}{2122} a^{10} + \frac{783}{2122} a^{9} - \frac{147}{2122} a^{8} - \frac{813}{2122} a^{7} - \frac{593}{2122} a^{6} + \frac{154}{1061} a^{5} - \frac{347}{2122} a^{4} + \frac{372}{1061} a^{3} - \frac{263}{1061} a^{2} - \frac{508}{1061} a - \frac{354}{1061}$, $\frac{1}{21120322073231091833426886372661910849259676827376} a^{20} - \frac{2274754751264168302338740679966276260261868667}{21120322073231091833426886372661910849259676827376} a^{19} + \frac{337503797003579338072059836102987044361103041}{21120322073231091833426886372661910849259676827376} a^{18} - \frac{152620684695075197249275310639157215005561741187}{21120322073231091833426886372661910849259676827376} a^{17} + \frac{833806759039532456423168948965693943817844459183}{5280080518307772958356721593165477712314919206844} a^{16} - \frac{1015064496992228875608091852361821617521990337327}{5280080518307772958356721593165477712314919206844} a^{15} + \frac{1239587678022736562072556498325141986347221880825}{5280080518307772958356721593165477712314919206844} a^{14} + \frac{2284767338499281871928189864450051345016956592437}{10560161036615545916713443186330955424629838413688} a^{13} + \frac{1176907079055300504576482923252291263103713411907}{5280080518307772958356721593165477712314919206844} a^{12} - \frac{1062758731243991043036477060270004675493411157543}{5280080518307772958356721593165477712314919206844} a^{11} + \frac{169468764643980971667843485899991272118535862207}{5280080518307772958356721593165477712314919206844} a^{10} - \frac{101441742911162043555411144764030447542637358265}{310592971665163115197454211362675159547936423932} a^{9} - \frac{1421840213664958004175718077023995828902215094493}{21120322073231091833426886372661910849259676827376} a^{8} - \frac{4282716025064903815442042703561680055403190468017}{21120322073231091833426886372661910849259676827376} a^{7} - \frac{1903780492062668770231907507748156117960726272417}{5280080518307772958356721593165477712314919206844} a^{6} - \frac{1540410302404007934291491070183950089927200663989}{5280080518307772958356721593165477712314919206844} a^{5} - \frac{510726464180465791486595231666490744450594346183}{2640040259153886479178360796582738856157459603422} a^{4} + \frac{128703427338373163458742836840207888370525245208}{1320020129576943239589180398291369428078729801711} a^{3} - \frac{87304138941732179032135474826624179337924996161}{1320020129576943239589180398291369428078729801711} a^{2} + \frac{1199830770528700123434544924399534147976735386729}{5280080518307772958356721593165477712314919206844} a + \frac{2332746669230533931448762629902990168340641317505}{5280080518307772958356721593165477712314919206844}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13512231302100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 60 conjugacy class representatives for t21n40 are not computed |
| Character table for t21n40 is not computed |
Intermediate fields
| 3.1.107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| $107$ | $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |