Properties

Label 21.7.191...384.1
Degree $21$
Signature $[7, 7]$
Discriminant $-1.912\times 10^{46}$
Root discriminant \(159.91\)
Ramified primes $2,7,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_7^2:S_3$ (as 21T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944)
 
Copy content gp:K = bnfinit(y^21 - 42*y^19 - 252*y^18 - 126*y^17 + 1078*y^16 + 8876*y^15 + 112790*y^14 - 464520*y^13 - 1249444*y^12 + 7005208*y^11 + 85428*y^10 - 61941628*y^9 + 217917392*y^8 - 47675940*y^7 - 3034648008*y^6 + 9194214624*y^5 + 622814024*y^4 - 56041091848*y^3 + 94469690336*y^2 + 18876673312*y - 82335377944, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944)
 

\( x^{21} - 42 x^{19} - 252 x^{18} - 126 x^{17} + 1078 x^{16} + 8876 x^{15} + 112790 x^{14} + \cdots - 82335377944 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[7, 7]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-19124990112791859831305063356808458501281808384\) \(\medspace = -\,2^{18}\cdot 7^{36}\cdot 31^{7}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(159.91\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}7^{96/49}31^{1/2}\approx 456.46642613478804$
Ramified primes:   \(2\), \(7\), \(31\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-31}) \)
$\Aut(K/\Q)$:   $C_7$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{4}a^{13}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{14}$, $\frac{1}{4}a^{15}$, $\frac{1}{20}a^{16}-\frac{1}{10}a^{15}-\frac{1}{20}a^{14}-\frac{1}{10}a^{12}+\frac{1}{5}a^{11}+\frac{1}{10}a^{10}+\frac{1}{10}a^{9}-\frac{1}{10}a^{8}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{1}{5}a^{4}+\frac{1}{5}a^{3}+\frac{1}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{20}a^{17}-\frac{1}{10}a^{14}-\frac{1}{10}a^{13}-\frac{1}{5}a^{10}+\frac{1}{10}a^{9}-\frac{1}{5}a^{8}-\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{1}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{20}a^{18}-\frac{1}{10}a^{15}-\frac{1}{10}a^{14}-\frac{1}{5}a^{11}+\frac{1}{10}a^{10}-\frac{1}{5}a^{9}-\frac{1}{5}a^{8}-\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}-\frac{2}{5}a$, $\frac{1}{40}a^{19}+\frac{1}{10}a^{15}-\frac{1}{20}a^{14}-\frac{1}{5}a^{12}-\frac{1}{5}a^{8}+\frac{1}{10}a^{7}+\frac{1}{5}a^{6}-\frac{1}{2}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{11\cdots 00}a^{20}+\frac{16\cdots 04}{14\cdots 25}a^{19}+\frac{19\cdots 11}{58\cdots 00}a^{18}-\frac{55\cdots 79}{58\cdots 00}a^{17}-\frac{12\cdots 71}{58\cdots 00}a^{16}-\frac{66\cdots 27}{14\cdots 25}a^{15}+\frac{25\cdots 18}{14\cdots 25}a^{14}+\frac{32\cdots 29}{58\cdots 00}a^{13}+\frac{36\cdots 82}{14\cdots 25}a^{12}-\frac{14\cdots 59}{14\cdots 25}a^{11}-\frac{56\cdots 39}{29\cdots 50}a^{10}+\frac{14\cdots 82}{14\cdots 25}a^{9}-\frac{66\cdots 79}{29\cdots 50}a^{8}+\frac{45\cdots 26}{29\cdots 45}a^{7}-\frac{15\cdots 23}{29\cdots 45}a^{6}+\frac{46\cdots 34}{14\cdots 25}a^{5}+\frac{15\cdots 91}{14\cdots 25}a^{4}+\frac{13\cdots 42}{29\cdots 45}a^{3}-\frac{63\cdots 26}{14\cdots 25}a^{2}+\frac{56\cdots 49}{29\cdots 45}a+\frac{91\cdots 64}{14\cdots 25}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\cdots 13}{34\cdots 00}a^{20}-\frac{22\cdots 59}{85\cdots 75}a^{19}+\frac{77\cdots 47}{17\cdots 50}a^{18}+\frac{28\cdots 77}{17\cdots 50}a^{17}+\frac{35\cdots 21}{34\cdots 00}a^{16}+\frac{53\cdots 09}{17\cdots 50}a^{15}+\frac{42\cdots 79}{17\cdots 50}a^{14}-\frac{18\cdots 29}{34\cdots 00}a^{13}-\frac{18\cdots 17}{85\cdots 75}a^{12}+\frac{71\cdots 83}{17\cdots 50}a^{11}+\frac{40\cdots 69}{17\cdots 50}a^{10}-\frac{14\cdots 62}{85\cdots 75}a^{9}-\frac{14\cdots 01}{17\cdots 50}a^{8}-\frac{23\cdots 01}{17\cdots 95}a^{7}-\frac{41\cdots 83}{34\cdots 90}a^{6}+\frac{26\cdots 36}{85\cdots 75}a^{5}+\frac{18\cdots 69}{85\cdots 75}a^{4}-\frac{34\cdots 47}{17\cdots 95}a^{3}-\frac{89\cdots 14}{85\cdots 75}a^{2}+\frac{78\cdots 72}{17\cdots 95}a+\frac{66\cdots 26}{85\cdots 75}$, $\frac{97\cdots 19}{46\cdots 52}a^{20}-\frac{40\cdots 95}{58\cdots 69}a^{19}-\frac{46\cdots 09}{11\cdots 80}a^{18}+\frac{87\cdots 69}{23\cdots 76}a^{17}+\frac{18\cdots 51}{11\cdots 80}a^{16}+\frac{66\cdots 81}{11\cdots 80}a^{15}-\frac{20\cdots 73}{11\cdots 80}a^{14}-\frac{12\cdots 21}{23\cdots 76}a^{13}-\frac{82\cdots 93}{29\cdots 45}a^{12}-\frac{26\cdots 37}{11\cdots 38}a^{11}+\frac{67\cdots 26}{29\cdots 45}a^{10}+\frac{32\cdots 77}{29\cdots 45}a^{9}-\frac{11\cdots 74}{29\cdots 45}a^{8}+\frac{93\cdots 43}{58\cdots 90}a^{7}+\frac{25\cdots 64}{58\cdots 69}a^{6}-\frac{47\cdots 45}{58\cdots 69}a^{5}-\frac{57\cdots 78}{29\cdots 45}a^{4}+\frac{25\cdots 52}{29\cdots 45}a^{3}-\frac{25\cdots 27}{29\cdots 45}a^{2}-\frac{13\cdots 88}{29\cdots 45}a+\frac{23\cdots 94}{29\cdots 45}$, $\frac{71\cdots 53}{23\cdots 60}a^{20}+\frac{31\cdots 41}{23\cdots 60}a^{19}-\frac{19\cdots 21}{29\cdots 45}a^{18}-\frac{12\cdots 11}{11\cdots 80}a^{17}-\frac{64\cdots 17}{11\cdots 80}a^{16}-\frac{12\cdots 31}{58\cdots 90}a^{15}-\frac{59\cdots 33}{11\cdots 80}a^{14}+\frac{46\cdots 61}{23\cdots 76}a^{13}-\frac{71\cdots 52}{29\cdots 45}a^{12}-\frac{11\cdots 09}{29\cdots 45}a^{11}+\frac{11\cdots 82}{58\cdots 69}a^{10}+\frac{53\cdots 63}{58\cdots 90}a^{9}-\frac{58\cdots 51}{58\cdots 90}a^{8}+\frac{73\cdots 91}{29\cdots 45}a^{7}+\frac{24\cdots 71}{29\cdots 45}a^{6}-\frac{26\cdots 53}{58\cdots 90}a^{5}+\frac{38\cdots 55}{58\cdots 69}a^{4}+\frac{52\cdots 52}{29\cdots 45}a^{3}-\frac{29\cdots 32}{58\cdots 69}a^{2}+\frac{25\cdots 54}{58\cdots 69}a-\frac{54\cdots 66}{29\cdots 45}$, $\frac{23\cdots 61}{29\cdots 50}a^{20}+\frac{26\cdots 27}{11\cdots 00}a^{19}+\frac{13\cdots 61}{58\cdots 00}a^{18}-\frac{35\cdots 89}{58\cdots 00}a^{17}-\frac{30\cdots 31}{58\cdots 00}a^{16}-\frac{94\cdots 02}{14\cdots 25}a^{15}-\frac{65\cdots 79}{29\cdots 50}a^{14}+\frac{16\cdots 29}{58\cdots 00}a^{13}+\frac{80\cdots 69}{29\cdots 50}a^{12}-\frac{27\cdots 83}{29\cdots 50}a^{11}-\frac{31\cdots 89}{29\cdots 50}a^{10}+\frac{33\cdots 99}{29\cdots 50}a^{9}-\frac{20\cdots 99}{29\cdots 50}a^{8}-\frac{34\cdots 54}{29\cdots 45}a^{7}+\frac{31\cdots 89}{58\cdots 90}a^{6}-\frac{57\cdots 47}{29\cdots 50}a^{5}-\frac{71\cdots 54}{14\cdots 25}a^{4}+\frac{94\cdots 36}{58\cdots 69}a^{3}-\frac{26\cdots 36}{14\cdots 25}a^{2}-\frac{35\cdots 11}{29\cdots 45}a+\frac{33\cdots 34}{14\cdots 25}$, $\frac{39\cdots 11}{11\cdots 80}a^{20}-\frac{21\cdots 43}{46\cdots 52}a^{19}-\frac{13\cdots 27}{11\cdots 80}a^{18}-\frac{86\cdots 69}{11\cdots 80}a^{17}+\frac{36\cdots 26}{29\cdots 45}a^{16}+\frac{18\cdots 47}{11\cdots 80}a^{15}+\frac{23\cdots 61}{58\cdots 90}a^{14}+\frac{82\cdots 25}{23\cdots 76}a^{13}-\frac{21\cdots 65}{11\cdots 38}a^{12}-\frac{13\cdots 73}{29\cdots 45}a^{11}+\frac{51\cdots 61}{58\cdots 90}a^{10}-\frac{28\cdots 89}{58\cdots 90}a^{9}-\frac{21\cdots 53}{29\cdots 45}a^{8}+\frac{23\cdots 48}{29\cdots 45}a^{7}-\frac{13\cdots 21}{58\cdots 90}a^{6}-\frac{17\cdots 61}{58\cdots 90}a^{5}+\frac{61\cdots 47}{29\cdots 45}a^{4}-\frac{94\cdots 59}{29\cdots 45}a^{3}+\frac{12\cdots 88}{58\cdots 69}a^{2}+\frac{53\cdots 24}{29\cdots 45}a-\frac{87\cdots 47}{29\cdots 45}$, $\frac{11\cdots 93}{14\cdots 25}a^{20}+\frac{32\cdots 49}{58\cdots 00}a^{19}-\frac{67\cdots 51}{58\cdots 00}a^{18}-\frac{20\cdots 11}{58\cdots 00}a^{17}-\frac{12\cdots 09}{58\cdots 00}a^{16}-\frac{21\cdots 41}{29\cdots 50}a^{15}-\frac{10\cdots 47}{58\cdots 00}a^{14}+\frac{28\cdots 21}{58\cdots 00}a^{13}+\frac{25\cdots 73}{14\cdots 25}a^{12}-\frac{41\cdots 17}{29\cdots 50}a^{11}-\frac{72\cdots 91}{29\cdots 50}a^{10}+\frac{13\cdots 58}{14\cdots 25}a^{9}-\frac{27\cdots 53}{14\cdots 25}a^{8}-\frac{19\cdots 91}{58\cdots 90}a^{7}+\frac{29\cdots 61}{58\cdots 90}a^{6}-\frac{11\cdots 39}{14\cdots 25}a^{5}-\frac{48\cdots 51}{14\cdots 25}a^{4}+\frac{40\cdots 89}{29\cdots 45}a^{3}-\frac{67\cdots 34}{14\cdots 25}a^{2}-\frac{37\cdots 27}{58\cdots 69}a+\frac{10\cdots 56}{14\cdots 25}$, $\frac{50\cdots 37}{58\cdots 00}a^{20}-\frac{19\cdots 29}{58\cdots 00}a^{19}+\frac{42\cdots 79}{14\cdots 25}a^{18}+\frac{11\cdots 51}{58\cdots 00}a^{17}+\frac{47\cdots 46}{14\cdots 25}a^{16}+\frac{13\cdots 17}{58\cdots 00}a^{15}+\frac{29\cdots 81}{29\cdots 50}a^{14}-\frac{23\cdots 81}{58\cdots 00}a^{13}+\frac{62\cdots 07}{14\cdots 25}a^{12}+\frac{35\cdots 57}{29\cdots 50}a^{11}-\frac{13\cdots 32}{14\cdots 25}a^{10}-\frac{41\cdots 11}{29\cdots 50}a^{9}+\frac{17\cdots 01}{29\cdots 50}a^{8}-\frac{93\cdots 65}{58\cdots 69}a^{7}+\frac{16\cdots 11}{58\cdots 90}a^{6}+\frac{42\cdots 64}{14\cdots 25}a^{5}-\frac{12\cdots 84}{14\cdots 25}a^{4}+\frac{10\cdots 96}{29\cdots 45}a^{3}+\frac{81\cdots 69}{14\cdots 25}a^{2}-\frac{30\cdots 14}{29\cdots 45}a-\frac{96\cdots 36}{14\cdots 25}$, $\frac{14\cdots 87}{11\cdots 80}a^{20}+\frac{30\cdots 09}{23\cdots 60}a^{19}+\frac{14\cdots 26}{29\cdots 45}a^{18}+\frac{29\cdots 69}{11\cdots 80}a^{17}-\frac{13\cdots 01}{11\cdots 80}a^{16}-\frac{13\cdots 75}{11\cdots 38}a^{15}-\frac{28\cdots 48}{29\cdots 45}a^{14}-\frac{72\cdots 01}{58\cdots 90}a^{13}+\frac{80\cdots 35}{11\cdots 38}a^{12}+\frac{40\cdots 21}{58\cdots 90}a^{11}-\frac{50\cdots 67}{58\cdots 90}a^{10}+\frac{45\cdots 51}{58\cdots 90}a^{9}+\frac{76\cdots 91}{11\cdots 38}a^{8}-\frac{37\cdots 57}{11\cdots 38}a^{7}+\frac{11\cdots 42}{29\cdots 45}a^{6}+\frac{17\cdots 63}{58\cdots 90}a^{5}-\frac{38\cdots 39}{29\cdots 45}a^{4}+\frac{37\cdots 96}{29\cdots 45}a^{3}+\frac{13\cdots 53}{29\cdots 45}a^{2}-\frac{42\cdots 32}{29\cdots 45}a+\frac{30\cdots 86}{29\cdots 45}$, $\frac{15\cdots 65}{23\cdots 76}a^{20}+\frac{73\cdots 79}{23\cdots 60}a^{19}+\frac{21\cdots 19}{11\cdots 80}a^{18}+\frac{27\cdots 19}{23\cdots 76}a^{17}-\frac{71\cdots 93}{11\cdots 80}a^{16}-\frac{18\cdots 19}{11\cdots 80}a^{15}-\frac{11\cdots 89}{11\cdots 80}a^{14}-\frac{13\cdots 18}{58\cdots 69}a^{13}+\frac{37\cdots 55}{58\cdots 69}a^{12}-\frac{58\cdots 39}{58\cdots 90}a^{11}+\frac{22\cdots 61}{58\cdots 90}a^{10}-\frac{22\cdots 31}{58\cdots 90}a^{9}+\frac{23\cdots 61}{29\cdots 45}a^{8}+\frac{86\cdots 41}{58\cdots 90}a^{7}-\frac{52\cdots 29}{29\cdots 45}a^{6}+\frac{45\cdots 21}{58\cdots 90}a^{5}-\frac{42\cdots 02}{29\cdots 45}a^{4}-\frac{37\cdots 01}{29\cdots 45}a^{3}+\frac{77\cdots 62}{58\cdots 69}a^{2}-\frac{77\cdots 39}{29\cdots 45}a+\frac{48\cdots 49}{29\cdots 45}$, $\frac{16\cdots 93}{46\cdots 52}a^{20}+\frac{61\cdots 21}{23\cdots 60}a^{19}-\frac{18\cdots 59}{11\cdots 80}a^{18}-\frac{64\cdots 27}{58\cdots 90}a^{17}-\frac{14\cdots 31}{11\cdots 80}a^{16}+\frac{45\cdots 51}{58\cdots 90}a^{15}+\frac{41\cdots 13}{58\cdots 90}a^{14}+\frac{16\cdots 42}{29\cdots 45}a^{13}-\frac{34\cdots 08}{29\cdots 45}a^{12}-\frac{20\cdots 47}{29\cdots 45}a^{11}+\frac{48\cdots 33}{58\cdots 90}a^{10}+\frac{96\cdots 83}{58\cdots 90}a^{9}-\frac{17\cdots 27}{11\cdots 38}a^{8}+\frac{18\cdots 76}{29\cdots 45}a^{7}+\frac{34\cdots 69}{58\cdots 90}a^{6}-\frac{48\cdots 47}{58\cdots 90}a^{5}+\frac{10\cdots 61}{58\cdots 69}a^{4}+\frac{13\cdots 87}{58\cdots 69}a^{3}-\frac{29\cdots 08}{29\cdots 45}a^{2}+\frac{63\cdots 51}{58\cdots 69}a+\frac{24\cdots 23}{29\cdots 45}$, $\frac{13\cdots 71}{58\cdots 00}a^{20}+\frac{50\cdots 03}{14\cdots 25}a^{19}-\frac{54\cdots 43}{58\cdots 00}a^{18}-\frac{20\cdots 79}{29\cdots 50}a^{17}-\frac{18\cdots 28}{14\cdots 25}a^{16}+\frac{57\cdots 69}{58\cdots 00}a^{15}+\frac{12\cdots 89}{58\cdots 00}a^{14}+\frac{17\cdots 73}{58\cdots 00}a^{13}-\frac{95\cdots 96}{14\cdots 25}a^{12}-\frac{59\cdots 03}{14\cdots 25}a^{11}+\frac{16\cdots 41}{14\cdots 25}a^{10}+\frac{23\cdots 14}{14\cdots 25}a^{9}-\frac{36\cdots 33}{29\cdots 50}a^{8}+\frac{96\cdots 24}{29\cdots 45}a^{7}+\frac{26\cdots 31}{58\cdots 90}a^{6}-\frac{10\cdots 37}{14\cdots 25}a^{5}+\frac{18\cdots 37}{14\cdots 25}a^{4}+\frac{12\cdots 02}{58\cdots 69}a^{3}-\frac{16\cdots 97}{14\cdots 25}a^{2}+\frac{24\cdots 74}{29\cdots 45}a+\frac{23\cdots 43}{14\cdots 25}$, $\frac{50\cdots 59}{58\cdots 00}a^{20}+\frac{13\cdots 31}{11\cdots 00}a^{19}-\frac{23\cdots 37}{58\cdots 00}a^{18}-\frac{33\cdots 13}{14\cdots 25}a^{17}+\frac{20\cdots 57}{58\cdots 00}a^{16}+\frac{12\cdots 91}{58\cdots 00}a^{15}+\frac{58\cdots 61}{58\cdots 00}a^{14}+\frac{13\cdots 33}{14\cdots 25}a^{13}-\frac{13\cdots 93}{29\cdots 50}a^{12}-\frac{23\cdots 67}{14\cdots 25}a^{11}+\frac{99\cdots 79}{14\cdots 25}a^{10}+\frac{27\cdots 77}{29\cdots 50}a^{9}-\frac{85\cdots 56}{14\cdots 25}a^{8}+\frac{36\cdots 19}{29\cdots 45}a^{7}+\frac{91\cdots 49}{29\cdots 45}a^{6}-\frac{84\cdots 71}{29\cdots 50}a^{5}+\frac{10\cdots 88}{14\cdots 25}a^{4}+\frac{64\cdots 80}{58\cdots 69}a^{3}-\frac{74\cdots 58}{14\cdots 25}a^{2}+\frac{52\cdots 16}{29\cdots 45}a+\frac{79\cdots 72}{14\cdots 25}$, $\frac{15\cdots 69}{11\cdots 00}a^{20}-\frac{84\cdots 97}{11\cdots 00}a^{19}-\frac{32\cdots 31}{58\cdots 00}a^{18}-\frac{18\cdots 91}{58\cdots 00}a^{17}-\frac{10\cdots 09}{58\cdots 00}a^{16}+\frac{64\cdots 19}{29\cdots 50}a^{15}+\frac{48\cdots 59}{29\cdots 50}a^{14}+\frac{21\cdots 89}{14\cdots 25}a^{13}-\frac{20\cdots 39}{29\cdots 50}a^{12}-\frac{44\cdots 07}{29\cdots 50}a^{11}+\frac{21\cdots 89}{29\cdots 50}a^{10}+\frac{49\cdots 71}{29\cdots 50}a^{9}-\frac{61\cdots 48}{14\cdots 25}a^{8}+\frac{69\cdots 27}{29\cdots 45}a^{7}-\frac{25\cdots 37}{58\cdots 90}a^{6}-\frac{77\cdots 03}{29\cdots 50}a^{5}+\frac{13\cdots 99}{14\cdots 25}a^{4}-\frac{58\cdots 48}{29\cdots 45}a^{3}-\frac{21\cdots 99}{14\cdots 25}a^{2}+\frac{20\cdots 74}{29\cdots 45}a+\frac{81\cdots 86}{14\cdots 25}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 814410889718241.8 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 814410889718241.8 \cdot 1}{2\cdot\sqrt{19124990112791859831305063356808458501281808384}}\cr\approx \mathstrut & 0.145707536289881 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 42*x^19 - 252*x^18 - 126*x^17 + 1078*x^16 + 8876*x^15 + 112790*x^14 - 464520*x^13 - 1249444*x^12 + 7005208*x^11 + 85428*x^10 - 61941628*x^9 + 217917392*x^8 - 47675940*x^7 - 3034648008*x^6 + 9194214624*x^5 + 622814024*x^4 - 56041091848*x^3 + 94469690336*x^2 + 18876673312*x - 82335377944); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7^2:S_3$ (as 21T18):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 294
The 20 conjugacy class representatives for $C_7^2:S_3$
Character table for $C_7^2:S_3$

Intermediate fields

3.1.31.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: data not computed
Degree 21 sibling: data not computed
Degree 42 siblings: data not computed
Minimal sibling: 14.0.337337631352558562817384077600704.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.14.0.1}{14} }{,}\,{\href{/padicField/3.7.0.1}{7} }$ ${\href{/padicField/5.3.0.1}{3} }^{7}$ R ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.7.0.1}{7} }$ ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ ${\href{/padicField/19.3.0.1}{3} }^{7}$ ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.7.0.1}{7} }$ ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.7.0.1}{7} }$ R ${\href{/padicField/37.14.0.1}{14} }{,}\,{\href{/padicField/37.7.0.1}{7} }$ ${\href{/padicField/41.3.0.1}{3} }^{7}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.7.0.1}{7} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{7}$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.7.0.1}{7} }$ ${\href{/padicField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.21.18.1$x^{21} + 7 x^{19} + 7 x^{18} + 21 x^{17} + 42 x^{16} + 56 x^{15} + 105 x^{14} + 140 x^{13} + 175 x^{12} + 231 x^{11} + 245 x^{10} + 252 x^{9} + 252 x^{8} + 211 x^{7} + 168 x^{6} + 126 x^{5} + 77 x^{4} + 42 x^{3} + 21 x^{2} + 7 x + 3$$7$$3$$18$21T2$$[\ ]_{7}^{3}$$
\(7\) Copy content Toggle raw display 7.21.36.382$x^{21} + 56 x^{20} + 1288 x^{19} + 16198 x^{18} + 123816 x^{17} + 604968 x^{16} + 1968960 x^{15} + 4611648 x^{14} + 8772288 x^{13} + 14035616 x^{12} + 18602752 x^{11} + 23631104 x^{10} + 21996800 x^{9} + 24890880 x^{8} + 15267840 x^{7} + 16955904 x^{6} + 6150144 x^{5} + 7268352 x^{4} + 1318912 x^{3} + 1777664 x^{2} + 114786 x + 188423$$7$$3$$36$not computednot computed
\(31\) Copy content Toggle raw display 31.7.0.1$x^{7} + x + 28$$1$$7$$0$$C_7$$$[\ ]^{7}$$
31.14.7.2$x^{14} + 2 x^{8} + 56 x^{7} + x^{2} + 56 x + 815$$2$$7$$7$$C_{14}$$$[\ ]_{2}^{7}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)