Normalized defining polynomial
\( x^{21} - 93 x^{19} - 62 x^{18} + 3186 x^{17} + 4248 x^{16} - 45699 x^{15} - 94230 x^{14} + 151668 x^{13} + 558008 x^{12} + 1909683 x^{11} + 4713258 x^{10} - 6558322 x^{9} - 46220760 x^{8} - 64186983 x^{7} + 10446906 x^{6} + 132062292 x^{5} + 178126920 x^{4} + 124258480 x^{3} + 50143968 x^{2} + 11143104 x + 1061248 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(210302543645345736468562461003484609741021790208=2^{14}\cdot 3^{28}\cdot 71^{3}\cdot 8291^{2}\cdot 283583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 8291, 283583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} - \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} - \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{9} - \frac{1}{27} a^{6} - \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} + \frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{11} - \frac{1}{27} a^{8} - \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} - \frac{1}{216} a^{13} - \frac{5}{972} a^{12} + \frac{1}{324} a^{11} + \frac{13}{1944} a^{9} - \frac{1}{108} a^{8} - \frac{10}{243} a^{6} - \frac{7}{648} a^{5} + \frac{7}{108} a^{4} + \frac{121}{972} a^{3} + \frac{31}{81} a^{2} - \frac{13}{72} a - \frac{313}{972}$, $\frac{1}{15552} a^{16} + \frac{1}{7776} a^{15} + \frac{7}{1728} a^{14} - \frac{1}{243} a^{13} - \frac{43}{7776} a^{12} - \frac{1}{432} a^{11} - \frac{203}{15552} a^{10} - \frac{19}{3888} a^{9} + \frac{7}{144} a^{8} + \frac{49}{972} a^{7} + \frac{227}{15552} a^{6} + \frac{13}{108} a^{5} - \frac{581}{7776} a^{4} + \frac{1}{3888} a^{3} + \frac{761}{1728} a^{2} - \frac{521}{3888} a + \frac{737}{3888}$, $\frac{1}{124416} a^{17} - \frac{5}{124416} a^{15} - \frac{191}{62208} a^{14} - \frac{89}{20736} a^{13} + \frac{49}{15552} a^{12} + \frac{1405}{124416} a^{11} - \frac{233}{20736} a^{10} + \frac{211}{31104} a^{9} + \frac{845}{15552} a^{8} + \frac{619}{13824} a^{7} + \frac{1253}{62208} a^{6} + \frac{7531}{62208} a^{5} - \frac{71}{5184} a^{4} - \frac{10183}{124416} a^{3} + \frac{30317}{62208} a^{2} + \frac{2177}{10368} a + \frac{6671}{15552}$, $\frac{1}{2985984} a^{18} + \frac{1}{497664} a^{17} - \frac{23}{995328} a^{16} - \frac{5}{27648} a^{15} + \frac{137}{497664} a^{14} + \frac{1259}{248832} a^{13} - \frac{2033}{995328} a^{12} + \frac{1093}{124416} a^{11} - \frac{2077}{124416} a^{10} + \frac{2675}{186624} a^{9} - \frac{3823}{995328} a^{8} - \frac{11555}{248832} a^{7} + \frac{1121}{165888} a^{6} + \frac{21853}{248832} a^{5} + \frac{133187}{995328} a^{4} - \frac{9647}{62208} a^{3} - \frac{20129}{124416} a^{2} - \frac{1955}{15552} a - \frac{10595}{186624}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{7}{2654208} a^{17} + \frac{25}{3981312} a^{16} + \frac{877}{3981312} a^{15} - \frac{923}{331776} a^{14} + \frac{24023}{7962624} a^{13} - \frac{1213}{1327104} a^{12} - \frac{5197}{331776} a^{11} - \frac{5297}{746496} a^{10} + \frac{201811}{23887872} a^{9} + \frac{15479}{1327104} a^{8} + \frac{191551}{3981312} a^{7} + \frac{17959}{995328} a^{6} - \frac{146839}{2654208} a^{5} - \frac{134087}{3981312} a^{4} - \frac{2831}{331776} a^{3} - \frac{42581}{165888} a^{2} - \frac{672107}{1492992} a - \frac{237377}{746496}$, $\frac{1}{191102976} a^{20} + \frac{1}{95551488} a^{19} - \frac{25}{191102976} a^{18} + \frac{1}{1327104} a^{17} - \frac{95}{10616832} a^{16} - \frac{2075}{15925248} a^{15} + \frac{8743}{63700992} a^{14} + \frac{68327}{15925248} a^{13} - \frac{44387}{15925248} a^{12} + \frac{122015}{11943936} a^{11} - \frac{733805}{191102976} a^{10} - \frac{111899}{11943936} a^{9} - \frac{515201}{10616832} a^{8} - \frac{235367}{5308416} a^{7} + \frac{535819}{63700992} a^{6} + \frac{2321845}{15925248} a^{5} - \frac{942559}{15925248} a^{4} - \frac{106339}{1990656} a^{3} - \frac{1027577}{11943936} a^{2} - \frac{134785}{2985984} a + \frac{928109}{2985984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38671611908100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.7.20134393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.31 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 71 | Data not computed | ||||||
| 8291 | Data not computed | ||||||
| 283583 | Data not computed | ||||||