Normalized defining polynomial
\( x^{21} - 2x - 2 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[1, 10]$ |
| |
| Discriminant: |
\(5906494199835900008339733920874496\)
\(\medspace = 2^{20}\cdot 3049\cdot 1847448940106914569164029\)
|
| |
| Root discriminant: | \(40.57\) |
| |
| Galois root discriminant: | $2^{20/21}3049^{1/2}1847448940106914569164029^{1/2}\approx 145231281067929.97$ | ||
| Ramified primes: |
\(2\), \(3049\), \(1847448940106914569164029\)
|
| |
| Discriminant root field: | $\Q(\sqrt{56328\!\cdots\!24421}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a+1$, $a^{11}-a-1$, $a^{9}-a^{8}+a^{6}-a^{5}+a^{3}-a^{2}+1$, $a^{15}-a^{8}-a^{7}-a^{2}+1$, $a^{18}-a^{15}-a^{11}-a^{10}+a^{8}+a^{7}-a^{5}+a^{3}+a^{2}-a-1$, $a^{20}+a^{14}-a^{10}+a^{8}+a^{7}+a^{6}+a^{5}-a^{4}-a^{3}-1$, $a^{19}-a^{16}-a^{14}+a^{13}+a^{12}-a^{10}-2a^{8}+2a^{6}+a^{5}-2a^{2}-a+1$, $a^{20}+a^{19}-a^{16}-a^{15}-2a^{14}+a^{11}+2a^{10}+2a^{9}+a^{8}-a^{6}-2a^{5}-3a^{4}-a^{3}+a+1$, $a^{19}-2a^{18}+a^{17}+a^{16}-a^{14}+a^{13}-2a^{11}+a^{10}+a^{9}-a^{8}-a^{7}+2a^{6}-2a^{4}+2a^{3}+a^{2}-2a-1$, $2a^{20}-a^{19}+a^{18}-2a^{17}+a^{16}+2a^{14}-2a^{13}-a^{12}-a^{11}+3a^{10}+a^{9}-a^{8}-3a^{7}+2a^{5}+2a^{4}-a^{3}-2a^{2}-a-3$
|
| |
| Regulator: | \( 746161852.089 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 746161852.089 \cdot 1}{2\cdot\sqrt{5906494199835900008339733920874496}}\cr\approx \mathstrut & 0.931036772650 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 51090942171709440000 |
| The 792 conjugacy class representatives for $S_{21}$ |
| Character table for $S_{21}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 42 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $17{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.11.0.1}{11} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $19{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | $19{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.13.0.1}{13} }{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.21.20a1.1 | $x^{21} + 2$ | $21$ | $1$ | $20$ | 21T11 | $$[\ ]_{21}^{6}$$ |
|
\(3049\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
|
\(184\!\cdots\!029\)
| $\Q_{18\!\cdots\!29}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ |