Normalized defining polynomial
\( x^{21} - 7 x^{20} + 28 x^{19} - 140 x^{18} + 539 x^{17} - 1589 x^{16} + 5208 x^{15} - 14550 x^{14} + 33726 x^{13} - 85652 x^{12} + 199136 x^{11} - 392630 x^{10} + 782026 x^{9} - 779296 x^{8} + 517684 x^{7} - 1556478 x^{6} + 6082125 x^{5} - 9280761 x^{4} + 10378536 x^{3} - 3684954 x^{2} + 2233119 x - 4362447 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11841910006204867301303769538659846667225792512=2^{26}\cdot 3^{19}\cdot 7^{21}\cdot 43^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{13} + \frac{1}{6} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{24} a^{16} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{24} a^{17} - \frac{1}{4} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{24} a^{18} - \frac{1}{4} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{4} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{72} a^{19} + \frac{1}{72} a^{16} + \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{9} a^{10} - \frac{1}{12} a^{9} + \frac{1}{6} a^{8} + \frac{1}{18} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{24} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{5}{24}$, $\frac{1}{1520755930648126484090267990474865941007146463309917187413206152} a^{20} + \frac{2272410110259223310709059113984032089650112329522215713644619}{380188982662031621022566997618716485251786615827479296853301538} a^{19} + \frac{3904859411059372383206426680829656605799387630353132223962995}{506918643549375494696755996824955313669048821103305729137735384} a^{18} - \frac{10655327141283046111204989156537798920016107388161921578707703}{760377965324063242045133995237432970503573231654958593706603076} a^{17} + \frac{23791417742595661927778289800589186142897088523062240367621281}{1520755930648126484090267990474865941007146463309917187413206152} a^{16} + \frac{503716986005943088332889814395990512936788533051196057158895}{253459321774687747348377998412477656834524410551652864568867692} a^{15} + \frac{1086816524667184191385199071705933694999625060584636042578537}{63364830443671936837094499603119414208631102637913216142216923} a^{14} + \frac{8903886410468735870019099134601852331577784151179422323004765}{253459321774687747348377998412477656834524410551652864568867692} a^{13} - \frac{13369241693096887065696930274478352708404364528174416636641525}{126729660887343873674188999206238828417262205275826432284433846} a^{12} + \frac{162078999304776547651520991566099447132390325208617264528605645}{760377965324063242045133995237432970503573231654958593706603076} a^{11} + \frac{153604337269068736704525752520920237879235334591336204881033703}{760377965324063242045133995237432970503573231654958593706603076} a^{10} + \frac{10241991823194719623471322853151016128487432816587150428735951}{84486440591562582449459332804159218944841470183884288189622564} a^{9} - \frac{20934961285774543783293783357043247181112953238370857345563598}{190094491331015810511283498809358242625893307913739648426650769} a^{8} + \frac{53548023182662715920238418949306701532407608624518330362448831}{760377965324063242045133995237432970503573231654958593706603076} a^{7} + \frac{18852725271421982144632280861686138349739543129313450127072705}{42243220295781291224729666402079609472420735091942144094811282} a^{6} + \frac{23778455656305397578583615764016954256987656814253475064488855}{84486440591562582449459332804159218944841470183884288189622564} a^{5} + \frac{228867478343856646670813919585287365540763365960003820886202757}{506918643549375494696755996824955313669048821103305729137735384} a^{4} - \frac{125277782052924169231642408949284003627331566579259123539123705}{253459321774687747348377998412477656834524410551652864568867692} a^{3} - \frac{39721936278852001065668665186765654341024560080433309041781343}{168972881183125164898918665608318437889682940367768576379245128} a^{2} - \frac{9311306645440951778923173457571895719381258747944833247234609}{126729660887343873674188999206238828417262205275826432284433846} a + \frac{149192563170174900136292941534261478848472917334505636075997957}{506918643549375494696755996824955313669048821103305729137735384}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2613750744265613.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.516.1, 7.1.38423222208.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.20.8 | $x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2$ | $14$ | $1$ | $20$ | $(C_7:C_3) \times C_2$ | $[2]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.13.2 | $x^{14} + 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |