Normalized defining polynomial
\( x^{20} - x^{19} - 49 x^{18} + 32 x^{17} + 926 x^{16} - 354 x^{15} - 8765 x^{14} + 1660 x^{13} + 45828 x^{12} - 2629 x^{11} - 137522 x^{10} - 4409 x^{9} + 237299 x^{8} + 22455 x^{7} - 226443 x^{6} - 31515 x^{5} + 107725 x^{4} + 17397 x^{3} - 20309 x^{2} - 2449 x + 1033 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(131527565972137936816816034072938673=11^{16}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(187=11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{187}(64,·)$, $\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(4,·)$, $\chi_{187}(69,·)$, $\chi_{187}(135,·)$, $\chi_{187}(137,·)$, $\chi_{187}(16,·)$, $\chi_{187}(81,·)$, $\chi_{187}(86,·)$, $\chi_{187}(152,·)$, $\chi_{187}(89,·)$, $\chi_{187}(157,·)$, $\chi_{187}(166,·)$, $\chi_{187}(38,·)$, $\chi_{187}(103,·)$, $\chi_{187}(169,·)$, $\chi_{187}(174,·)$, $\chi_{187}(47,·)$, $\chi_{187}(115,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2258404151618334475175002761674878666} a^{19} - \frac{394340400029153125003652821433137061}{2258404151618334475175002761674878666} a^{18} + \frac{271115295882140560145852905333391643}{1129202075809167237587501380837439333} a^{17} - \frac{58944976980178268156131112961360329}{2258404151618334475175002761674878666} a^{16} - \frac{372941101042152394645071215326327255}{2258404151618334475175002761674878666} a^{15} + \frac{340918407545081289591926710622811868}{1129202075809167237587501380837439333} a^{14} - \frac{582379291007296373142554876600786769}{2258404151618334475175002761674878666} a^{13} + \frac{886049215457833639494168064273616433}{2258404151618334475175002761674878666} a^{12} - \frac{118098448248767134109231410020462859}{1129202075809167237587501380837439333} a^{11} + \frac{69996040050637711302402805550680471}{1129202075809167237587501380837439333} a^{10} - \frac{572316135132531383541158484466580267}{2258404151618334475175002761674878666} a^{9} + \frac{627599029026407744551586187116000801}{2258404151618334475175002761674878666} a^{8} + \frac{21386151332601085045808965294856367}{2258404151618334475175002761674878666} a^{7} + \frac{349523396365557291934265788030263433}{2258404151618334475175002761674878666} a^{6} + \frac{100192220350297268561590824006492131}{1129202075809167237587501380837439333} a^{5} - \frac{898208561817034047007089651904218179}{2258404151618334475175002761674878666} a^{4} - \frac{900882311288978464613940466572055103}{2258404151618334475175002761674878666} a^{3} + \frac{322643787298949251775678943071331007}{1129202075809167237587501380837439333} a^{2} + \frac{456860064408751177664471591860454289}{2258404151618334475175002761674878666} a - \frac{204387236089121975349946130474098813}{1129202075809167237587501380837439333}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124763101953 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{11})^+\), 10.10.304358957700017.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||