Normalized defining polynomial
\( x^{20} - 5 x^{19} + 5 x^{18} + 15 x^{17} - 30 x^{16} - 21 x^{15} + 75 x^{14} + 15 x^{13} - 120 x^{12} - 5 x^{11} + 141 x^{10} - 5 x^{9} - 120 x^{8} + 15 x^{7} + 75 x^{6} - 21 x^{5} - 30 x^{4} + 15 x^{3} + 5 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(781250000000000000000=2^{16}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{431} a^{18} - \frac{86}{431} a^{17} + \frac{74}{431} a^{16} + \frac{141}{431} a^{15} + \frac{112}{431} a^{14} - \frac{183}{431} a^{13} + \frac{132}{431} a^{12} - \frac{150}{431} a^{11} - \frac{170}{431} a^{10} + \frac{123}{431} a^{9} - \frac{170}{431} a^{8} - \frac{150}{431} a^{7} + \frac{132}{431} a^{6} - \frac{183}{431} a^{5} + \frac{112}{431} a^{4} + \frac{141}{431} a^{3} + \frac{74}{431} a^{2} - \frac{86}{431} a + \frac{1}{431}$, $\frac{1}{431} a^{19} + \frac{5}{431} a^{17} + \frac{40}{431} a^{16} + \frac{170}{431} a^{15} - \frac{33}{431} a^{14} - \frac{90}{431} a^{13} - \frac{4}{431} a^{12} - \frac{140}{431} a^{11} + \frac{157}{431} a^{10} + \frac{64}{431} a^{9} - \frac{116}{431} a^{8} + \frac{162}{431} a^{7} - \frac{37}{431} a^{6} - \frac{110}{431} a^{5} - \frac{140}{431} a^{4} + \frac{132}{431} a^{3} - \frac{187}{431} a^{2} - \frac{68}{431} a + \frac{86}{431}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{288}{431} a^{19} + \frac{532}{431} a^{18} - \frac{6384}{431} a^{17} + \frac{5633}{431} a^{16} + \frac{23980}{431} a^{15} - \frac{30948}{431} a^{14} - \frac{54316}{431} a^{13} + \frac{77692}{431} a^{12} + \frac{93656}{431} a^{11} - \frac{121080}{431} a^{10} - \frac{133356}{431} a^{9} + \frac{124408}{431} a^{8} + \frac{140980}{431} a^{7} - \frac{80076}{431} a^{6} - \frac{92832}{431} a^{5} + \frac{43400}{431} a^{4} + \frac{38896}{431} a^{3} - \frac{17936}{431} a^{2} - \frac{8444}{431} a + \frac{4612}{431} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 525.931286845 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.50000.1 x5, 10.2.12500000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.50000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||