Normalized defining polynomial
\( x^{19} - 5x - 1 \)
Invariants
| Degree: | $19$ |
| |
| Signature: | $[3, 8]$ |
| |
| Discriminant: |
\(750473176483017185344339686410876021\)
\(\medspace = 7\cdot 229\cdot 46\!\cdots\!07\)
|
| |
| Root discriminant: | \(77.30\) |
| |
| Galois root discriminant: | $7^{1/2}229^{1/2}468167920451040040763780216101607^{1/2}\approx 8.662985492790676e+17$ | ||
| Ramified primes: |
\(7\), \(229\), \(46816\!\cdots\!01607\)
|
| |
| Discriminant root field: | $\Q(\sqrt{75047\!\cdots\!76021}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{9}+2$, $a^{11}-a^{10}+2a^{9}-2a^{8}+3a^{7}-3a^{6}+3a^{5}-4a^{4}+3a^{3}-3a^{2}+a-2$, $2a^{18}+a^{17}+4a^{16}+3a^{15}+a^{14}+6a^{13}+3a^{12}+3a^{11}+7a^{10}+4a^{9}+5a^{8}+8a^{7}+6a^{6}+7a^{5}+9a^{4}+11a^{3}+7a^{2}+14a+5$, $5a^{18}-2a^{17}-5a^{16}+8a^{15}-2a^{14}-8a^{13}+10a^{12}-10a^{10}+10a^{9}-a^{8}-11a^{7}+14a^{6}-2a^{5}-15a^{4}+19a^{3}-a^{2}-19a-2$, $6a^{18}+11a^{17}+9a^{16}+4a^{15}-7a^{14}-14a^{13}-19a^{12}-12a^{11}-2a^{10}+15a^{9}+23a^{8}+25a^{7}+9a^{6}-11a^{5}-36a^{4}-43a^{3}-36a^{2}-3a$, $5a^{18}+5a^{17}-2a^{16}-a^{15}-5a^{14}-5a^{13}+6a^{12}+9a^{11}-a^{10}-5a^{9}-6a^{8}-10a^{7}+8a^{6}+20a^{5}-5a^{4}-6a^{3}-10a^{2}-22a-6$, $6a^{18}-7a^{16}+7a^{15}-9a^{13}+9a^{12}-11a^{10}+13a^{9}+2a^{8}-14a^{7}+13a^{6}-21a^{4}+18a^{3}+5a^{2}-23a-5$, $16a^{18}-23a^{17}-a^{16}+17a^{15}+7a^{14}-33a^{13}+12a^{12}+31a^{11}-26a^{10}-21a^{9}+25a^{8}+35a^{7}-67a^{6}+7a^{5}+53a^{4}-11a^{3}-67a^{2}+31a+8$, $2a^{18}-2a^{17}-4a^{16}+8a^{15}-4a^{14}-3a^{13}-2a^{12}+16a^{11}-14a^{10}-2a^{9}+a^{8}+17a^{7}-21a^{6}+3a^{5}+10a^{4}+5a^{3}-25a^{2}+12a+4$
|
| |
| Regulator: | \( 65190521248.6 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{8}\cdot 65190521248.6 \cdot 1}{2\cdot\sqrt{750473176483017185344339686410876021}}\cr\approx \mathstrut & 0.731165691246 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 121645100408832000 |
| The 490 conjugacy class representatives for $S_{19}$ |
| Character table for $S_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ | ${\href{/padicField/3.10.0.1}{10} }{,}\,{\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.9.0.1}{9} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.13.0.1}{13} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.9.0.1}{9} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.13.0.1}{13} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.13.0.1}{13} }{,}\,{\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.9.0.1}{9} }$ | $15{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $15{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.11.0.1}{11} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.4.1.0a1.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 7.6.1.0a1.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 7.7.1.0a1.1 | $x^{7} + 6 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | |
|
\(229\)
| $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $$[\ ]^{12}$$ | ||
|
\(468\!\cdots\!607\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ |