Normalized defining polynomial
\( x^{19} - 9x - 1 \)
Invariants
| Degree: | $19$ |
| |
| Signature: | $[3, 8]$ |
| |
| Discriminant: |
\(53151162932776812454737157860046003696757\)
\(\medspace = 101\cdot 9221\cdot 1141909\cdot 263051581967\cdot 189994470465354439\)
|
| |
| Root discriminant: | \(139.14\) |
| |
| Galois root discriminant: | $101^{1/2}9221^{1/2}1141909^{1/2}263051581967^{1/2}189994470465354439^{1/2}\approx 2.3054535981619066e+20$ | ||
| Ramified primes: |
\(101\), \(9221\), \(1141909\), \(263051581967\), \(189994470465354439\)
|
| |
| Discriminant root field: | $\Q(\sqrt{53151\!\cdots\!96757}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{9}-3$, $a^{6}-2$, $7a^{17}-5a^{16}-5a^{14}+16a^{13}-6a^{12}+5a^{11}-13a^{10}+19a^{9}+6a^{8}+10a^{7}-25a^{6}+23a^{5}+2a^{4}+40a^{3}-47a^{2}+12a-1$, $18a^{18}-73a^{17}+111a^{16}-85a^{15}-6a^{14}+105a^{13}-131a^{12}+52a^{11}+82a^{10}-166a^{9}+144a^{8}-63a^{7}+18a^{6}-45a^{5}+75a^{4}-28a^{3}-84a^{2}+90a+12$, $285a^{18}+598a^{17}+706a^{16}+491a^{15}-17a^{14}-641a^{13}-1081a^{12}-1061a^{11}-484a^{10}+483a^{9}+1396a^{8}+1740a^{7}+1155a^{6}-308a^{5}-2056a^{4}-3211a^{3}-2901a^{2}-793a-59$, $397a^{18}-448a^{17}+508a^{16}-565a^{15}+635a^{14}-721a^{13}+814a^{12}-903a^{11}+1020a^{10}-1160a^{9}+1293a^{8}-1440a^{7}+1626a^{6}-1841a^{5}+2035a^{4}-2282a^{3}+2582a^{2}-2893a-356$, $6610a^{18}+6265a^{17}-1480a^{16}-10253a^{15}-9922a^{14}+2558a^{13}+15981a^{12}+14299a^{11}-5021a^{10}-23411a^{9}-19136a^{8}+8012a^{7}+31931a^{6}+25969a^{5}-9437a^{4}-42744a^{3}-38951a^{2}+8154a+1331$, $10150a^{18}-11993a^{17}+7736a^{16}+2668a^{15}-12654a^{14}+20680a^{13}-17327a^{12}+4884a^{11}+13511a^{10}-30603a^{9}+34059a^{8}-19924a^{7}-6454a^{6}+41555a^{5}-56069a^{4}+50739a^{3}-11887a^{2}-43835a-4646$, $763a^{18}+546a^{17}-34a^{16}-411a^{15}-270a^{14}+29a^{13}-156a^{12}-880a^{11}-1253a^{10}-215a^{9}+2016a^{8}+3572a^{7}+2531a^{6}-1169a^{5}-5144a^{4}-5998a^{3}-2335a^{2}+3576a+418$
|
| |
| Regulator: | \( 11114856383000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{8}\cdot 11114856383000 \cdot 1}{2\cdot\sqrt{53151162932776812454737157860046003696757}}\cr\approx \mathstrut & 0.468431841109576 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 121645100408832000 |
| The 490 conjugacy class representatives for $S_{19}$ |
| Character table for $S_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ | $18{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $16{,}\,{\href{/padicField/5.3.0.1}{3} }$ | $16{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | $19$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.9.0.1}{9} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.7.0.1}{7} }$ | $18{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ | $17{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.7.0.1}{7} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(101\)
| $\Q_{101}$ | $x + 99$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 101.2.1.0a1.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 101.1.2.1a1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.14.1.0a1.1 | $x^{14} - x + 15$ | $1$ | $14$ | $0$ | $C_{14}$ | $$[\ ]^{14}$$ | |
|
\(9221\)
| $\Q_{9221}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | ||
|
\(1141909\)
| $\Q_{1141909}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $$[\ ]^{14}$$ | ||
|
\(263051581967\)
| $\Q_{263051581967}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $$[\ ]^{14}$$ | ||
|
\(189994470465354439\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |