Normalized defining polynomial
\( x^{19} - 9x - 5 \)
Invariants
| Degree: | $19$ |
| |
| Signature: | $[3, 8]$ |
| |
| Discriminant: |
\(53143615860726108280854552247929172898861\)
\(\medspace = 6219297888079\cdot 8544954240347693873940241859\)
|
| |
| Root discriminant: | \(139.14\) |
| |
| Galois root discriminant: | $6219297888079^{1/2}8544954240347693873940241859^{1/2}\approx 2.305289913670862e+20$ | ||
| Ramified primes: |
\(6219297888079\), \(8544954240347693873940241859\)
|
| |
| Discriminant root field: | $\Q(\sqrt{53143\!\cdots\!98861}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{10}+3a+1$, $6a^{18}-a^{17}-a^{16}+13a^{15}-13a^{14}+9a^{13}-9a^{12}-13a^{11}+11a^{10}-11a^{9}+14a^{8}+19a^{7}-12a^{6}+19a^{5}-16a^{4}-31a^{3}+23a^{2}-56a-21$, $2a^{17}+2a^{16}-3a^{15}-a^{14}-2a^{13}+3a^{12}+5a^{11}+2a^{10}-2a^{9}-4a^{8}-6a^{7}+3a^{6}+8a^{5}+3a^{4}+a^{3}-24a^{2}-10a+2$, $198a^{18}-114a^{17}+81a^{16}-33a^{15}-10a^{14}-20a^{13}+34a^{12}+5a^{11}-14a^{10}+12a^{9}+7a^{8}-56a^{7}-22a^{6}+87a^{5}+50a^{4}-82a^{3}-51a^{2}+41a-1811$, $293a^{18}-347a^{17}-539a^{16}+213a^{15}+796a^{14}+78a^{13}-999a^{12}-552a^{11}+1056a^{10}+1192a^{9}-845a^{8}-1925a^{7}+234a^{6}+2612a^{5}+868a^{4}-3019a^{3}-2474a^{2}+2821a+1841$, $323a^{18}-62a^{17}-529a^{16}-862a^{15}-827a^{14}-344a^{13}+484a^{12}+1308a^{11}+1707a^{10}+1309a^{9}+84a^{8}-1610a^{7}-2985a^{6}-3205a^{5}-1721a^{4}+1193a^{3}+4437a^{2}+6281a+2383$, $271a^{18}-140a^{17}-47a^{16}+222a^{15}-290a^{14}+199a^{13}+27a^{12}-295a^{11}+457a^{10}-392a^{9}+99a^{8}+318a^{7}-659a^{6}+695a^{5}-344a^{4}-273a^{3}+896a^{2}-1147a-1657$, $109a^{18}+213a^{17}+282a^{16}+285a^{15}+214a^{14}+84a^{13}-58a^{12}-161a^{11}-196a^{10}-168a^{9}-145a^{8}-198a^{7}-402a^{6}-732a^{5}-1082a^{4}-1242a^{3}-992a^{2}-213a+64$, $142a^{18}+199a^{17}+169a^{16}+59a^{15}-162a^{14}-443a^{13}-539a^{12}-369a^{11}-52a^{10}+321a^{9}+721a^{8}+790a^{7}+256a^{6}-620a^{5}-1342a^{4}-1807a^{3}-1708a^{2}-570a-4$, $678a^{18}+3646a^{17}-4740a^{16}+467a^{15}+5482a^{14}-6405a^{13}-42a^{12}+8145a^{11}-8584a^{10}-1066a^{9}+11968a^{8}-11400a^{7}-2931a^{6}+17425a^{5}-14958a^{4}-6108a^{3}+25192a^{2}-19309a-17384$
|
| |
| Regulator: | \( 27546004978300 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{8}\cdot 27546004978300 \cdot 1}{2\cdot\sqrt{53143615860726108280854552247929172898861}}\cr\approx \mathstrut & 1.16099943855555 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 121645100408832000 |
| The 490 conjugacy class representatives for $S_{19}$ |
| Character table for $S_{19}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ | $18{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | $16{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.9.0.1}{9} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $16{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | $17{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/padicField/47.4.0.1}{4} }$ | $15{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(6219297888079\)
| $\Q_{6219297888079}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | ||
|
\(854\!\cdots\!859\)
| $\Q_{85\!\cdots\!59}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{85\!\cdots\!59}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $15$ | $1$ | $15$ | $0$ | $C_{15}$ | $$[\ ]^{15}$$ |