Properties

Label 18.6.727...712.1
Degree $18$
Signature $[6, 6]$
Discriminant $7.277\times 10^{29}$
Root discriminant \(45.60\)
Ramified primes $2,3,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^4:(C_6^2:C_4)$ (as 18T576)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256)
 
Copy content gp:K = bnfinit(y^18 - 18*y^16 - y^15 + 117*y^14 - 27*y^13 - 369*y^12 + 366*y^11 + 18*y^10 - 768*y^9 + 1332*y^8 - 728*y^6 + 1008*y^5 - 432*y^4 - 384*y^3 + 192*y^2 - 256, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256)
 

\( x^{18} - 18 x^{16} - x^{15} + 117 x^{14} - 27 x^{13} - 369 x^{12} + 366 x^{11} + 18 x^{10} - 768 x^{9} + \cdots - 256 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[6, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(727702811914257020738325491712\) \(\medspace = 2^{12}\cdot 3^{27}\cdot 13^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.60\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{355/162}13^{3/4}\approx 215.0532439469929$
Ramified primes:   \(2\), \(3\), \(13\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{3}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{3}{8}a^{7}+\frac{1}{8}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{14}-\frac{1}{16}a^{11}+\frac{1}{16}a^{10}+\frac{3}{16}a^{9}+\frac{1}{16}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{32}a^{15}-\frac{1}{16}a^{13}-\frac{1}{32}a^{12}-\frac{3}{32}a^{11}-\frac{3}{32}a^{10}-\frac{1}{32}a^{9}+\frac{3}{16}a^{8}+\frac{1}{16}a^{7}+\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{128}a^{16}-\frac{1}{64}a^{15}-\frac{1}{64}a^{14}-\frac{5}{128}a^{13}+\frac{7}{128}a^{12}-\frac{5}{128}a^{11}-\frac{3}{128}a^{10}-\frac{3}{16}a^{9}+\frac{7}{64}a^{8}-\frac{3}{32}a^{7}+\frac{5}{32}a^{6}-\frac{7}{16}a^{5}+\frac{5}{16}a^{4}-\frac{1}{2}a^{3}+\frac{3}{8}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{11\cdots 36}a^{17}+\frac{17\cdots 09}{55\cdots 68}a^{16}+\frac{35\cdots 07}{55\cdots 68}a^{15}-\frac{19\cdots 89}{11\cdots 36}a^{14}+\frac{21\cdots 75}{11\cdots 36}a^{13}+\frac{26\cdots 43}{11\cdots 36}a^{12}+\frac{12\cdots 93}{65\cdots 08}a^{11}+\frac{24\cdots 89}{27\cdots 84}a^{10}+\frac{69\cdots 19}{55\cdots 68}a^{9}+\frac{11\cdots 19}{27\cdots 84}a^{8}-\frac{10\cdots 43}{27\cdots 84}a^{7}-\frac{58\cdots 85}{13\cdots 92}a^{6}+\frac{17\cdots 53}{13\cdots 92}a^{5}-\frac{17\cdots 07}{34\cdots 48}a^{4}-\frac{31\cdots 81}{69\cdots 96}a^{3}-\frac{97\cdots 97}{34\cdots 48}a^{2}+\frac{42\cdots 17}{17\cdots 24}a+\frac{21\cdots 60}{43\cdots 81}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\cdots 43}{13\cdots 92}a^{17}+\frac{15\cdots 63}{27\cdots 84}a^{16}-\frac{47\cdots 41}{34\cdots 48}a^{15}-\frac{27\cdots 59}{34\cdots 48}a^{14}+\frac{22\cdots 39}{27\cdots 84}a^{13}-\frac{20\cdots 27}{27\cdots 84}a^{12}-\frac{39\cdots 79}{16\cdots 52}a^{11}+\frac{10\cdots 21}{27\cdots 84}a^{10}-\frac{91\cdots 69}{13\cdots 92}a^{9}-\frac{17\cdots 59}{13\cdots 92}a^{8}+\frac{18\cdots 59}{17\cdots 24}a^{7}+\frac{32\cdots 47}{69\cdots 96}a^{6}-\frac{18\cdots 43}{17\cdots 24}a^{5}+\frac{95\cdots 33}{34\cdots 48}a^{4}+\frac{73\cdots 85}{17\cdots 24}a^{3}+\frac{60\cdots 61}{17\cdots 24}a^{2}+\frac{27\cdots 77}{43\cdots 81}a+\frac{15\cdots 69}{43\cdots 81}$, $\frac{266828103905059}{43\cdots 81}a^{17}+\frac{31\cdots 13}{27\cdots 84}a^{16}-\frac{54\cdots 02}{43\cdots 81}a^{15}-\frac{76\cdots 67}{13\cdots 92}a^{14}+\frac{27\cdots 07}{27\cdots 84}a^{13}+\frac{14\cdots 41}{27\cdots 84}a^{12}-\frac{62\cdots 59}{16\cdots 52}a^{11}-\frac{36\cdots 53}{27\cdots 84}a^{10}+\frac{73\cdots 69}{13\cdots 92}a^{9}+\frac{30\cdots 99}{13\cdots 92}a^{8}+\frac{70\cdots 29}{34\cdots 48}a^{7}+\frac{19\cdots 49}{69\cdots 96}a^{6}-\frac{57\cdots 13}{17\cdots 24}a^{5}-\frac{71\cdots 01}{34\cdots 48}a^{4}-\frac{94\cdots 51}{17\cdots 24}a^{3}+\frac{16\cdots 57}{17\cdots 24}a^{2}-\frac{28\cdots 03}{43\cdots 81}a-\frac{69\cdots 49}{43\cdots 81}$, $\frac{4218397059}{1352705323744}a^{17}+\frac{1835443521}{2705410647488}a^{16}-\frac{9479030251}{169088165468}a^{15}-\frac{12082754517}{676352661872}a^{14}+\frac{987007156245}{2705410647488}a^{13}+\frac{111666948311}{2705410647488}a^{12}-\frac{3217085331609}{2705410647488}a^{11}+\frac{1572921395523}{2705410647488}a^{10}+\frac{686395515213}{1352705323744}a^{9}-\frac{1926538346361}{1352705323744}a^{8}+\frac{198663427467}{84544082734}a^{7}+\frac{848903710357}{676352661872}a^{6}-\frac{180959131983}{169088165468}a^{5}-\frac{385999061571}{338176330936}a^{4}+\frac{133474186171}{169088165468}a^{3}+\frac{16649627007}{169088165468}a^{2}-\frac{24193875537}{42272041367}a-\frac{4226039197}{42272041367}$, $\frac{15\cdots 67}{13\cdots 92}a^{17}+\frac{22\cdots 13}{55\cdots 68}a^{16}-\frac{58\cdots 47}{27\cdots 84}a^{15}-\frac{27\cdots 35}{27\cdots 84}a^{14}+\frac{82\cdots 99}{55\cdots 68}a^{13}+\frac{25\cdots 19}{55\cdots 68}a^{12}-\frac{17\cdots 89}{32\cdots 04}a^{11}+\frac{50\cdots 09}{55\cdots 68}a^{10}+\frac{81\cdots 07}{13\cdots 92}a^{9}-\frac{13\cdots 37}{27\cdots 84}a^{8}+\frac{89\cdots 19}{13\cdots 92}a^{7}+\frac{75\cdots 65}{13\cdots 92}a^{6}-\frac{60\cdots 21}{69\cdots 96}a^{5}-\frac{77\cdots 59}{69\cdots 96}a^{4}-\frac{24\cdots 87}{17\cdots 24}a^{3}-\frac{85\cdots 41}{34\cdots 48}a^{2}+\frac{18\cdots 27}{17\cdots 24}a+\frac{19\cdots 21}{87\cdots 62}$, $\frac{24\cdots 13}{11\cdots 36}a^{17}-\frac{17\cdots 45}{69\cdots 96}a^{16}-\frac{20\cdots 79}{55\cdots 68}a^{15}+\frac{39\cdots 31}{11\cdots 36}a^{14}+\frac{23\cdots 41}{11\cdots 36}a^{13}-\frac{25\cdots 35}{11\cdots 36}a^{12}-\frac{31\cdots 81}{65\cdots 08}a^{11}+\frac{49\cdots 41}{55\cdots 68}a^{10}-\frac{65\cdots 73}{55\cdots 68}a^{9}+\frac{96\cdots 09}{69\cdots 96}a^{8}+\frac{20\cdots 27}{27\cdots 84}a^{7}-\frac{17\cdots 57}{69\cdots 96}a^{6}+\frac{40\cdots 03}{13\cdots 92}a^{5}-\frac{13\cdots 75}{69\cdots 96}a^{4}-\frac{13\cdots 25}{69\cdots 96}a^{3}+\frac{10\cdots 55}{87\cdots 62}a^{2}-\frac{31\cdots 81}{43\cdots 81}a+\frac{96\cdots 45}{87\cdots 62}$, $\frac{20\cdots 93}{69\cdots 96}a^{17}-\frac{12\cdots 99}{27\cdots 84}a^{16}-\frac{37\cdots 03}{69\cdots 96}a^{15}+\frac{64\cdots 95}{13\cdots 92}a^{14}+\frac{10\cdots 51}{27\cdots 84}a^{13}-\frac{35\cdots 31}{27\cdots 84}a^{12}-\frac{20\cdots 35}{16\cdots 52}a^{11}+\frac{34\cdots 75}{27\cdots 84}a^{10}+\frac{83\cdots 35}{13\cdots 92}a^{9}-\frac{35\cdots 61}{13\cdots 92}a^{8}+\frac{94\cdots 87}{34\cdots 48}a^{7}+\frac{98\cdots 79}{69\cdots 96}a^{6}-\frac{57\cdots 17}{17\cdots 24}a^{5}+\frac{73\cdots 75}{34\cdots 48}a^{4}+\frac{44\cdots 59}{17\cdots 24}a^{3}-\frac{38\cdots 19}{17\cdots 24}a^{2}+\frac{61\cdots 80}{43\cdots 81}a-\frac{59\cdots 41}{43\cdots 81}$, $\frac{44\cdots 91}{11\cdots 36}a^{17}+\frac{21\cdots 45}{55\cdots 68}a^{16}-\frac{36\cdots 99}{55\cdots 68}a^{15}-\frac{81\cdots 63}{11\cdots 36}a^{14}-\frac{72\cdots 91}{11\cdots 36}a^{13}+\frac{59\cdots 05}{11\cdots 36}a^{12}+\frac{64\cdots 59}{65\cdots 08}a^{11}-\frac{14\cdots 11}{69\cdots 96}a^{10}+\frac{38\cdots 33}{55\cdots 68}a^{9}+\frac{67\cdots 07}{27\cdots 84}a^{8}-\frac{46\cdots 77}{27\cdots 84}a^{7}+\frac{15\cdots 75}{13\cdots 92}a^{6}+\frac{18\cdots 47}{13\cdots 92}a^{5}-\frac{16\cdots 89}{87\cdots 62}a^{4}-\frac{45\cdots 03}{69\cdots 96}a^{3}+\frac{16\cdots 19}{34\cdots 48}a^{2}+\frac{10\cdots 41}{17\cdots 24}a-\frac{47\cdots 07}{43\cdots 81}$, $\frac{87\cdots 63}{69\cdots 96}a^{17}-\frac{66\cdots 59}{27\cdots 84}a^{16}-\frac{18\cdots 01}{69\cdots 96}a^{15}+\frac{20\cdots 01}{13\cdots 92}a^{14}+\frac{58\cdots 15}{27\cdots 84}a^{13}-\frac{73\cdots 07}{27\cdots 84}a^{12}-\frac{14\cdots 67}{16\cdots 52}a^{11}+\frac{10\cdots 19}{27\cdots 84}a^{10}+\frac{19\cdots 29}{13\cdots 92}a^{9}-\frac{15\cdots 67}{13\cdots 92}a^{8}+\frac{19\cdots 83}{34\cdots 48}a^{7}+\frac{47\cdots 45}{69\cdots 96}a^{6}-\frac{41\cdots 29}{17\cdots 24}a^{5}+\frac{97\cdots 39}{34\cdots 48}a^{4}+\frac{49\cdots 13}{17\cdots 24}a^{3}-\frac{51\cdots 87}{17\cdots 24}a^{2}+\frac{24\cdots 26}{43\cdots 81}a+\frac{11\cdots 86}{43\cdots 81}$, $\frac{23\cdots 17}{55\cdots 68}a^{17}+\frac{10\cdots 55}{34\cdots 48}a^{16}-\frac{21\cdots 59}{27\cdots 84}a^{15}-\frac{31\cdots 93}{55\cdots 68}a^{14}+\frac{28\cdots 53}{55\cdots 68}a^{13}+\frac{13\cdots 57}{55\cdots 68}a^{12}-\frac{56\cdots 77}{32\cdots 04}a^{11}+\frac{10\cdots 29}{27\cdots 84}a^{10}+\frac{37\cdots 83}{27\cdots 84}a^{9}-\frac{10\cdots 09}{34\cdots 48}a^{8}+\frac{50\cdots 03}{13\cdots 92}a^{7}+\frac{13\cdots 97}{34\cdots 48}a^{6}-\frac{23\cdots 53}{69\cdots 96}a^{5}+\frac{63\cdots 61}{34\cdots 48}a^{4}-\frac{16\cdots 09}{34\cdots 48}a^{3}-\frac{18\cdots 29}{87\cdots 62}a^{2}-\frac{32\cdots 79}{43\cdots 81}a+\frac{52\cdots 68}{43\cdots 81}$, $\frac{39\cdots 55}{55\cdots 68}a^{17}+\frac{37\cdots 23}{27\cdots 84}a^{16}-\frac{32\cdots 47}{27\cdots 84}a^{15}-\frac{72\cdots 31}{55\cdots 68}a^{14}+\frac{36\cdots 97}{55\cdots 68}a^{13}-\frac{14\cdots 51}{55\cdots 68}a^{12}-\frac{69\cdots 01}{32\cdots 04}a^{11}+\frac{27\cdots 13}{13\cdots 92}a^{10}-\frac{17\cdots 11}{27\cdots 84}a^{9}-\frac{16\cdots 05}{13\cdots 92}a^{8}+\frac{57\cdots 83}{13\cdots 92}a^{7}+\frac{34\cdots 65}{69\cdots 96}a^{6}+\frac{69\cdots 87}{69\cdots 96}a^{5}-\frac{40\cdots 85}{17\cdots 24}a^{4}-\frac{87\cdots 39}{34\cdots 48}a^{3}+\frac{49\cdots 91}{17\cdots 24}a^{2}+\frac{20\cdots 35}{87\cdots 62}a-\frac{23\cdots 31}{43\cdots 81}$, $\frac{60\cdots 93}{11\cdots 36}a^{17}-\frac{42\cdots 53}{13\cdots 92}a^{16}-\frac{57\cdots 15}{55\cdots 68}a^{15}+\frac{54\cdots 79}{11\cdots 36}a^{14}+\frac{83\cdots 53}{11\cdots 36}a^{13}-\frac{53\cdots 11}{11\cdots 36}a^{12}-\frac{17\cdots 09}{65\cdots 08}a^{11}+\frac{17\cdots 69}{55\cdots 68}a^{10}+\frac{10\cdots 99}{55\cdots 68}a^{9}-\frac{20\cdots 89}{34\cdots 48}a^{8}+\frac{18\cdots 67}{27\cdots 84}a^{7}+\frac{10\cdots 41}{69\cdots 96}a^{6}-\frac{12\cdots 53}{13\cdots 92}a^{5}+\frac{17\cdots 01}{69\cdots 96}a^{4}+\frac{14\cdots 27}{69\cdots 96}a^{3}-\frac{73\cdots 23}{43\cdots 81}a^{2}+\frac{166834396244837}{87\cdots 62}a+\frac{11\cdots 77}{87\cdots 62}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 289404566.926 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 289404566.926 \cdot 1}{2\cdot\sqrt{727702811914257020738325491712}}\cr\approx \mathstrut & 0.667970898720 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 18*x^16 - x^15 + 117*x^14 - 27*x^13 - 369*x^12 + 366*x^11 + 18*x^10 - 768*x^9 + 1332*x^8 - 728*x^6 + 1008*x^5 - 432*x^4 - 384*x^3 + 192*x^2 - 256); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^4:(C_6^2:C_4)$ (as 18T576):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 11664
The 49 conjugacy class representatives for $C_3^4:(C_6^2:C_4)$
Character table for $C_3^4:(C_6^2:C_4)$

Intermediate fields

\(\Q(\sqrt{13}) \), 6.2.2313441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ R ${\href{/padicField/17.2.0.1}{2} }^{7}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.1.0a1.1$x^{2} + x + 1$$1$$2$$0$$C_2$$$[\ ]^{2}$$
2.2.2.4a2.1$x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 3$$2$$2$$4$$D_{4}$$$[2, 2]^{2}$$
2.4.1.0a1.1$x^{4} + x + 1$$1$$4$$0$$C_4$$$[\ ]^{4}$$
2.4.2.8a3.1$x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$$2$$4$$8$$C_2^2:C_4$$$[2, 2]^{4}$$
\(3\) Copy content Toggle raw display 3.1.9.18c4.3$x^{9} + 6 x^{6} + 18 x + 21$$9$$1$$18$$C_3^2 : S_3 $$$[2, 2, \frac{7}{3}]^{2}$$
3.3.3.9a2.1$x^{9} + 6 x^{7} + 3 x^{6} + 12 x^{5} + 12 x^{4} + 14 x^{3} + 12 x^{2} + 12 x + 7$$3$$3$$9$$S_3\times C_3$$$[\frac{3}{2}]_{2}^{3}$$
\(13\) Copy content Toggle raw display 13.3.2.3a1.2$x^{6} + 4 x^{4} + 22 x^{3} + 4 x^{2} + 44 x + 134$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
13.3.4.9a1.3$x^{12} + 8 x^{10} + 44 x^{9} + 24 x^{8} + 264 x^{7} + 758 x^{6} + 528 x^{5} + 2920 x^{4} + 5676 x^{3} + 2904 x^{2} + 10648 x + 14654$$4$$3$$9$$C_{12}$$$[\ ]_{4}^{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)