Properties

Label 18.6.216...000.1
Degree $18$
Signature $[6, 6]$
Discriminant $2.166\times 10^{40}$
Root discriminant \(174.13\)
Ramified primes $2,3,5,11,3511$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^4:(C_6^2:C_4)$ (as 18T576)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600)
 
Copy content gp:K = bnfinit(y^18 - 3*y^17 - 15*y^16 + 69*y^15 - 846*y^14 + 3867*y^13 + 16107*y^12 + 46644*y^11 + 382065*y^10 - 613030*y^9 + 570666*y^8 + 592680*y^7 - 883320*y^6 - 749160*y^5 + 379680*y^4 + 193200*y^3 + 32400*y^2 - 4800*y - 1600, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600)
 

\( x^{18} - 3 x^{17} - 15 x^{16} + 69 x^{15} - 846 x^{14} + 3867 x^{13} + 16107 x^{12} + 46644 x^{11} + \cdots - 1600 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[6, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(21655026155451642797719955871000000000000\) \(\medspace = 2^{12}\cdot 3^{24}\cdot 5^{12}\cdot 11^{6}\cdot 3511^{3}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(174.13\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(5\), \(11\), \(3511\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{3511}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{13}+\frac{1}{4}a^{9}+\frac{1}{4}a^{8}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{40}a^{14}-\frac{3}{40}a^{13}-\frac{1}{8}a^{12}-\frac{1}{40}a^{11}+\frac{1}{10}a^{10}-\frac{3}{40}a^{9}+\frac{7}{40}a^{8}-\frac{3}{20}a^{7}+\frac{3}{8}a^{6}+\frac{1}{4}a^{5}-\frac{1}{10}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{40}a^{15}-\frac{1}{10}a^{13}+\frac{1}{10}a^{12}+\frac{1}{40}a^{11}+\frac{9}{40}a^{10}+\frac{1}{5}a^{9}+\frac{1}{8}a^{8}+\frac{17}{40}a^{7}-\frac{3}{8}a^{6}+\frac{2}{5}a^{5}-\frac{1}{20}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{80}a^{16}-\frac{1}{80}a^{15}-\frac{1}{80}a^{14}-\frac{1}{80}a^{13}-\frac{1}{10}a^{12}-\frac{1}{16}a^{11}+\frac{1}{80}a^{10}+\frac{9}{40}a^{9}-\frac{7}{80}a^{8}+\frac{1}{4}a^{7}-\frac{17}{40}a^{6}-\frac{1}{10}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{79\cdots 80}a^{17}+\frac{46\cdots 11}{79\cdots 80}a^{16}+\frac{71\cdots 19}{79\cdots 80}a^{15}-\frac{83\cdots 81}{79\cdots 80}a^{14}-\frac{19\cdots 41}{19\cdots 20}a^{13}+\frac{95\cdots 67}{79\cdots 80}a^{12}-\frac{15\cdots 39}{79\cdots 80}a^{11}-\frac{89\cdots 27}{39\cdots 40}a^{10}-\frac{31\cdots 91}{79\cdots 80}a^{9}-\frac{42\cdots 53}{19\cdots 92}a^{8}+\frac{79\cdots 09}{39\cdots 40}a^{7}+\frac{51\cdots 11}{19\cdots 20}a^{6}-\frac{11\cdots 49}{49\cdots 80}a^{5}-\frac{96\cdots 99}{99\cdots 60}a^{4}+\frac{15\cdots 35}{99\cdots 96}a^{3}-\frac{19\cdots 43}{99\cdots 96}a^{2}+\frac{44\cdots 23}{99\cdots 96}a-\frac{13\cdots 67}{49\cdots 98}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{16\cdots 67}{24\cdots 80}a^{17}-\frac{47\cdots 59}{24\cdots 80}a^{16}-\frac{24\cdots 51}{24\cdots 80}a^{15}+\frac{11\cdots 13}{24\cdots 80}a^{14}-\frac{34\cdots 91}{60\cdots 20}a^{13}+\frac{62\cdots 97}{24\cdots 80}a^{12}+\frac{26\cdots 23}{24\cdots 80}a^{11}+\frac{39\cdots 71}{12\cdots 40}a^{10}+\frac{63\cdots 63}{24\cdots 80}a^{9}-\frac{23\cdots 37}{60\cdots 92}a^{8}+\frac{43\cdots 91}{12\cdots 40}a^{7}+\frac{24\cdots 33}{60\cdots 20}a^{6}-\frac{81\cdots 97}{15\cdots 98}a^{5}-\frac{34\cdots 71}{60\cdots 92}a^{4}+\frac{56\cdots 63}{30\cdots 96}a^{3}+\frac{52\cdots 25}{30\cdots 96}a^{2}+\frac{16\cdots 85}{30\cdots 96}a+\frac{20\cdots 79}{15\cdots 98}$, $\frac{16\cdots 89}{79\cdots 80}a^{17}-\frac{10\cdots 85}{15\cdots 36}a^{16}-\frac{22\cdots 89}{79\cdots 80}a^{15}+\frac{24\cdots 55}{15\cdots 36}a^{14}-\frac{17\cdots 37}{99\cdots 60}a^{13}+\frac{67\cdots 99}{79\cdots 80}a^{12}+\frac{48\cdots 65}{15\cdots 36}a^{11}+\frac{34\cdots 07}{39\cdots 40}a^{10}+\frac{60\cdots 17}{79\cdots 80}a^{9}-\frac{29\cdots 33}{19\cdots 20}a^{8}+\frac{63\cdots 97}{39\cdots 40}a^{7}+\frac{16\cdots 03}{19\cdots 20}a^{6}-\frac{53\cdots 39}{24\cdots 90}a^{5}-\frac{17\cdots 95}{19\cdots 92}a^{4}+\frac{11\cdots 45}{99\cdots 96}a^{3}+\frac{52\cdots 79}{99\cdots 96}a^{2}-\frac{23\cdots 53}{99\cdots 96}a+\frac{89\cdots 91}{49\cdots 98}$, $\frac{13\cdots 91}{49\cdots 80}a^{17}-\frac{17\cdots 21}{19\cdots 20}a^{16}-\frac{15\cdots 87}{39\cdots 84}a^{15}+\frac{39\cdots 47}{19\cdots 20}a^{14}-\frac{93\cdots 93}{39\cdots 84}a^{13}+\frac{10\cdots 37}{99\cdots 60}a^{12}+\frac{82\cdots 87}{19\cdots 20}a^{11}+\frac{23\cdots 39}{19\cdots 20}a^{10}+\frac{50\cdots 33}{49\cdots 98}a^{9}-\frac{37\cdots 03}{19\cdots 20}a^{8}+\frac{97\cdots 11}{49\cdots 80}a^{7}+\frac{60\cdots 09}{49\cdots 80}a^{6}-\frac{33\cdots 12}{12\cdots 95}a^{5}-\frac{14\cdots 83}{99\cdots 96}a^{4}+\frac{33\cdots 27}{24\cdots 99}a^{3}+\frac{56\cdots 26}{24\cdots 99}a^{2}+\frac{75\cdots 58}{24\cdots 99}a-\frac{44\cdots 13}{24\cdots 99}$, $\frac{40\cdots 73}{79\cdots 80}a^{17}-\frac{97\cdots 29}{79\cdots 80}a^{16}-\frac{69\cdots 17}{79\cdots 80}a^{15}+\frac{24\cdots 83}{79\cdots 80}a^{14}-\frac{82\cdots 67}{19\cdots 20}a^{13}+\frac{13\cdots 43}{79\cdots 80}a^{12}+\frac{75\cdots 73}{79\cdots 80}a^{11}+\frac{11\cdots 29}{39\cdots 40}a^{10}+\frac{16\cdots 41}{79\cdots 80}a^{9}-\frac{19\cdots 41}{99\cdots 60}a^{8}+\frac{40\cdots 69}{39\cdots 40}a^{7}+\frac{19\cdots 47}{39\cdots 84}a^{6}-\frac{66\cdots 41}{24\cdots 90}a^{5}-\frac{13\cdots 29}{19\cdots 92}a^{4}-\frac{46\cdots 95}{99\cdots 96}a^{3}+\frac{20\cdots 61}{99\cdots 96}a^{2}+\frac{73\cdots 63}{99\cdots 96}a+\frac{63\cdots 71}{49\cdots 98}$, $\frac{77\cdots 95}{15\cdots 36}a^{17}-\frac{25\cdots 15}{15\cdots 36}a^{16}-\frac{10\cdots 35}{15\cdots 36}a^{15}+\frac{56\cdots 29}{15\cdots 36}a^{14}-\frac{84\cdots 77}{19\cdots 92}a^{13}+\frac{31\cdots 45}{15\cdots 36}a^{12}+\frac{11\cdots 71}{15\cdots 36}a^{11}+\frac{16\cdots 77}{79\cdots 68}a^{10}+\frac{28\cdots 51}{15\cdots 36}a^{9}-\frac{13\cdots 09}{39\cdots 84}a^{8}+\frac{29\cdots 95}{79\cdots 68}a^{7}+\frac{81\cdots 05}{39\cdots 84}a^{6}-\frac{25\cdots 31}{49\cdots 98}a^{5}-\frac{40\cdots 89}{19\cdots 92}a^{4}+\frac{27\cdots 51}{99\cdots 96}a^{3}-\frac{16\cdots 85}{99\cdots 96}a^{2}-\frac{10\cdots 15}{99\cdots 96}a+\frac{32\cdots 81}{49\cdots 98}$, $\frac{10\cdots 61}{15\cdots 36}a^{17}-\frac{18\cdots 41}{79\cdots 80}a^{16}-\frac{73\cdots 89}{79\cdots 80}a^{15}+\frac{40\cdots 87}{79\cdots 80}a^{14}-\frac{11\cdots 63}{19\cdots 20}a^{13}+\frac{22\cdots 63}{79\cdots 80}a^{12}+\frac{77\cdots 49}{79\cdots 80}a^{11}+\frac{10\cdots 29}{39\cdots 40}a^{10}+\frac{19\cdots 49}{79\cdots 80}a^{9}-\frac{53\cdots 67}{99\cdots 60}a^{8}+\frac{23\cdots 37}{39\cdots 40}a^{7}+\frac{45\cdots 01}{19\cdots 20}a^{6}-\frac{39\cdots 17}{49\cdots 80}a^{5}-\frac{20\cdots 03}{99\cdots 60}a^{4}+\frac{49\cdots 03}{99\cdots 96}a^{3}-\frac{31\cdots 43}{99\cdots 96}a^{2}-\frac{30\cdots 53}{99\cdots 96}a-\frac{21\cdots 19}{49\cdots 98}$, $\frac{41\cdots 73}{79\cdots 80}a^{17}-\frac{82\cdots 57}{79\cdots 80}a^{16}-\frac{71\cdots 01}{79\cdots 80}a^{15}+\frac{43\cdots 99}{15\cdots 36}a^{14}-\frac{83\cdots 21}{19\cdots 20}a^{13}+\frac{12\cdots 79}{79\cdots 80}a^{12}+\frac{80\cdots 57}{79\cdots 80}a^{11}+\frac{13\cdots 69}{39\cdots 40}a^{10}+\frac{18\cdots 29}{79\cdots 80}a^{9}-\frac{19\cdots 07}{24\cdots 90}a^{8}+\frac{17\cdots 41}{79\cdots 68}a^{7}+\frac{10\cdots 73}{19\cdots 20}a^{6}+\frac{44\cdots 51}{49\cdots 98}a^{5}-\frac{30\cdots 49}{99\cdots 60}a^{4}-\frac{11\cdots 39}{99\cdots 96}a^{3}-\frac{13\cdots 17}{99\cdots 96}a^{2}+\frac{32\cdots 71}{99\cdots 96}a+\frac{40\cdots 57}{49\cdots 98}$, $\frac{11\cdots 81}{79\cdots 80}a^{17}-\frac{21\cdots 61}{79\cdots 80}a^{16}-\frac{19\cdots 01}{79\cdots 80}a^{15}+\frac{57\cdots 03}{79\cdots 80}a^{14}-\frac{45\cdots 49}{39\cdots 84}a^{13}+\frac{68\cdots 79}{15\cdots 36}a^{12}+\frac{22\cdots 97}{79\cdots 80}a^{11}+\frac{39\cdots 37}{39\cdots 40}a^{10}+\frac{52\cdots 61}{79\cdots 80}a^{9}-\frac{15\cdots 69}{99\cdots 60}a^{8}+\frac{22\cdots 01}{39\cdots 40}a^{7}+\frac{30\cdots 33}{19\cdots 20}a^{6}+\frac{18\cdots 41}{49\cdots 98}a^{5}-\frac{83\cdots 17}{99\cdots 60}a^{4}-\frac{38\cdots 75}{99\cdots 96}a^{3}-\frac{50\cdots 27}{99\cdots 96}a^{2}+\frac{80\cdots 83}{99\cdots 96}a+\frac{16\cdots 61}{49\cdots 98}$, $\frac{11\cdots 67}{15\cdots 36}a^{17}+\frac{90\cdots 45}{15\cdots 36}a^{16}-\frac{77\cdots 83}{79\cdots 80}a^{15}+\frac{55\cdots 37}{15\cdots 36}a^{14}+\frac{52\cdots 33}{19\cdots 20}a^{13}-\frac{15\cdots 47}{79\cdots 80}a^{12}+\frac{28\cdots 27}{79\cdots 80}a^{11}-\frac{42\cdots 61}{39\cdots 40}a^{10}+\frac{19\cdots 11}{79\cdots 80}a^{9}+\frac{59\cdots 79}{99\cdots 96}a^{8}-\frac{74\cdots 93}{39\cdots 40}a^{7}+\frac{12\cdots 35}{39\cdots 84}a^{6}-\frac{10\cdots 43}{49\cdots 80}a^{5}+\frac{11\cdots 87}{99\cdots 60}a^{4}+\frac{21\cdots 03}{99\cdots 96}a^{3}+\frac{74\cdots 29}{99\cdots 96}a^{2}-\frac{21\cdots 51}{99\cdots 96}a-\frac{15\cdots 85}{49\cdots 98}$, $\frac{53\cdots 33}{79\cdots 80}a^{17}-\frac{12\cdots 01}{79\cdots 80}a^{16}-\frac{89\cdots 81}{79\cdots 80}a^{15}+\frac{30\cdots 07}{79\cdots 80}a^{14}-\frac{54\cdots 51}{99\cdots 60}a^{13}+\frac{35\cdots 47}{15\cdots 36}a^{12}+\frac{19\cdots 61}{15\cdots 36}a^{11}+\frac{32\cdots 47}{79\cdots 68}a^{10}+\frac{22\cdots 01}{79\cdots 80}a^{9}-\frac{81\cdots 47}{39\cdots 84}a^{8}+\frac{94\cdots 77}{39\cdots 40}a^{7}+\frac{11\cdots 97}{19\cdots 20}a^{6}-\frac{44\cdots 81}{24\cdots 90}a^{5}-\frac{63\cdots 37}{99\cdots 60}a^{4}-\frac{20\cdots 17}{99\cdots 96}a^{3}-\frac{21\cdots 69}{99\cdots 96}a^{2}+\frac{64\cdots 51}{99\cdots 96}a+\frac{73\cdots 01}{49\cdots 98}$, $\frac{16\cdots 07}{79\cdots 80}a^{17}-\frac{12\cdots 39}{79\cdots 80}a^{16}+\frac{32\cdots 37}{79\cdots 80}a^{15}-\frac{27\cdots 19}{79\cdots 80}a^{14}-\frac{39\cdots 01}{24\cdots 99}a^{13}+\frac{12\cdots 09}{79\cdots 80}a^{12}-\frac{30\cdots 37}{79\cdots 80}a^{11}+\frac{10\cdots 73}{39\cdots 40}a^{10}-\frac{30\cdots 17}{79\cdots 80}a^{9}+\frac{55\cdots 49}{19\cdots 20}a^{8}+\frac{21\cdots 95}{79\cdots 68}a^{7}-\frac{78\cdots 57}{19\cdots 20}a^{6}-\frac{34\cdots 53}{12\cdots 95}a^{5}+\frac{22\cdots 99}{99\cdots 60}a^{4}+\frac{29\cdots 15}{99\cdots 96}a^{3}+\frac{51\cdots 31}{99\cdots 96}a^{2}-\frac{37\cdots 87}{99\cdots 96}a+\frac{81\cdots 01}{49\cdots 98}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 49924278928300 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 49924278928300 \cdot 1}{2\cdot\sqrt{21655026155451642797719955871000000000000}}\cr\approx \mathstrut & 0.667977190927831 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 3*x^17 - 15*x^16 + 69*x^15 - 846*x^14 + 3867*x^13 + 16107*x^12 + 46644*x^11 + 382065*x^10 - 613030*x^9 + 570666*x^8 + 592680*x^7 - 883320*x^6 - 749160*x^5 + 379680*x^4 + 193200*x^3 + 32400*x^2 - 4800*x - 1600); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^4:(C_6^2:C_4)$ (as 18T576):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 11664
The 49 conjugacy class representatives for $C_3^4:(C_6^2:C_4)$
Character table for $C_3^4:(C_6^2:C_4)$

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.55130625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{3}$ R ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }$ ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ ${\href{/padicField/41.2.0.1}{2} }^{7}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.1.0a1.1$x^{2} + x + 1$$1$$2$$0$$C_2$$$[\ ]^{2}$$
2.2.2.4a2.2$x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$$2$$2$$4$$D_{4}$$$[2, 2]^{2}$$
2.4.1.0a1.1$x^{4} + x + 1$$1$$4$$0$$C_4$$$[\ ]^{4}$$
2.4.2.8a3.1$x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$$2$$4$$8$$C_2^2:C_4$$$[2, 2]^{4}$$
\(3\) Copy content Toggle raw display 3.2.9.24a21.1$x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4176 x^{14} + 14112 x^{13} + 38304 x^{12} + 85248 x^{11} + 157536 x^{10} + 243398 x^{9} + 315123 x^{8} + 341214 x^{7} + 307044 x^{6} + 226956 x^{5} + 135192 x^{4} + 62904 x^{3} + 21648 x^{2} + 4944 x + 563$$9$$2$$24$18T95not computed
\(5\) Copy content Toggle raw display 5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.1.4.3a1.4$x^{4} + 20$$4$$1$$3$$C_4$$$[\ ]_{4}$$
5.2.4.6a1.2$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
\(11\) Copy content Toggle raw display 11.1.3.2a1.1$x^{3} + 11$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
11.3.1.0a1.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$$[\ ]^{3}$$
11.2.3.4a1.2$x^{6} + 21 x^{5} + 153 x^{4} + 427 x^{3} + 306 x^{2} + 84 x + 19$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
11.6.1.0a1.1$x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
\(3511\) Copy content Toggle raw display Deg $3$$1$$3$$0$$C_3$$$[\ ]^{3}$$
Deg $3$$1$$3$$0$$C_3$$$[\ ]^{3}$$
Deg $6$$1$$6$$0$$C_6$$$[\ ]^{6}$$
Deg $6$$2$$3$$3$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)