Normalized defining polynomial
\( x^{18} - 18x^{15} - 50x^{12} - 360x^{9} - 860x^{6} - 648x^{3} - 216 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(5355700839936000000000000000\)
\(\medspace = 2^{24}\cdot 3^{21}\cdot 5^{15}\)
|
| |
| Root discriminant: | \(34.71\) |
| |
| Galois root discriminant: | $2^{4/3}3^{7/6}5^{5/6}\approx 34.71281190206154$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{15}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{6}a^{8}+\frac{1}{3}a^{2}$, $\frac{1}{6}a^{9}+\frac{1}{3}a^{3}$, $\frac{1}{36}a^{10}+\frac{1}{18}a^{4}$, $\frac{1}{36}a^{11}+\frac{1}{18}a^{5}$, $\frac{1}{36}a^{12}+\frac{1}{18}a^{6}$, $\frac{1}{36}a^{13}+\frac{1}{18}a^{7}$, $\frac{1}{72}a^{14}-\frac{1}{18}a^{8}-\frac{1}{6}a^{2}$, $\frac{1}{293112}a^{15}-\frac{1}{108}a^{13}+\frac{211}{24426}a^{12}-\frac{1}{108}a^{11}+\frac{1343}{73278}a^{9}+\frac{4}{27}a^{7}+\frac{5711}{24426}a^{6}-\frac{1}{54}a^{5}+\frac{1}{3}a^{4}-\frac{7583}{24426}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{422}{1357}$, $\frac{1}{293112}a^{16}+\frac{1}{216}a^{14}+\frac{211}{24426}a^{13}-\frac{1}{108}a^{12}-\frac{1385}{146556}a^{10}-\frac{2}{27}a^{8}+\frac{5711}{24426}a^{7}-\frac{1}{54}a^{6}+\frac{1}{3}a^{5}-\frac{1490}{4071}a^{4}+\frac{1}{3}a^{3}-\frac{1}{6}a^{2}-\frac{422}{1357}a$, $\frac{1}{293112}a^{17}-\frac{57}{10856}a^{14}-\frac{7}{36639}a^{11}+\frac{1}{18}a^{9}-\frac{179}{4071}a^{8}-\frac{1}{6}a^{7}-\frac{25463}{73278}a^{5}+\frac{1}{9}a^{3}-\frac{1175}{8142}a^{2}-\frac{1}{3}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1135}{97704}a^{17}-\frac{6887}{32568}a^{14}-\frac{732}{1357}a^{11}-\frac{16486}{4071}a^{8}-\frac{218953}{24426}a^{5}-\frac{38435}{8142}a^{2}$, $\frac{4}{4071}a^{17}+\frac{151}{73278}a^{16}-\frac{247}{146556}a^{15}-\frac{3139}{146556}a^{14}-\frac{1528}{36639}a^{13}+\frac{1061}{36639}a^{12}+\frac{698}{36639}a^{11}-\frac{1985}{146556}a^{10}+\frac{8273}{73278}a^{9}-\frac{6659}{36639}a^{8}-\frac{23144}{36639}a^{7}+\frac{43331}{73278}a^{6}+\frac{14869}{36639}a^{5}-\frac{8399}{24426}a^{4}+\frac{24767}{12213}a^{3}+\frac{7210}{4071}a^{2}+\frac{2041}{4071}a+\frac{847}{1357}$, $\frac{4}{4071}a^{17}+\frac{1343}{146556}a^{16}+\frac{247}{73278}a^{15}-\frac{3139}{146556}a^{14}-\frac{6148}{36639}a^{13}-\frac{2122}{36639}a^{12}+\frac{698}{36639}a^{11}-\frac{60281}{146556}a^{10}-\frac{8273}{36639}a^{9}-\frac{6659}{36639}a^{8}-\frac{112304}{36639}a^{7}-\frac{43331}{36639}a^{6}+\frac{14869}{36639}a^{5}-\frac{166279}{24426}a^{4}-\frac{49534}{12213}a^{3}+\frac{7210}{4071}a^{2}-\frac{12047}{4071}a-\frac{4408}{1357}$, $\frac{209}{24426}a^{17}-\frac{1343}{146556}a^{16}+\frac{247}{146556}a^{15}-\frac{23321}{146556}a^{14}+\frac{6148}{36639}a^{13}-\frac{1061}{36639}a^{12}-\frac{12128}{36639}a^{11}+\frac{60281}{146556}a^{10}-\frac{8273}{73278}a^{9}-\frac{214247}{73278}a^{8}+\frac{112304}{36639}a^{7}-\frac{43331}{73278}a^{6}-\frac{202585}{36639}a^{5}+\frac{166279}{24426}a^{4}-\frac{24767}{12213}a^{3}-\frac{10604}{4071}a^{2}+\frac{12047}{4071}a-\frac{847}{1357}$, $\frac{85}{97704}a^{16}-\frac{475}{24426}a^{13}+\frac{1691}{48852}a^{10}-\frac{3949}{12213}a^{7}+\frac{6815}{12213}a^{4}-\frac{1764}{1357}a$, $\frac{1441}{293112}a^{17}-\frac{187}{48852}a^{16}-\frac{1369}{146556}a^{15}-\frac{9167}{97704}a^{14}+\frac{11183}{146556}a^{13}+\frac{4435}{24426}a^{12}-\frac{10675}{73278}a^{11}+\frac{1165}{24426}a^{10}+\frac{15263}{73278}a^{9}-\frac{19325}{12213}a^{8}+\frac{88241}{73278}a^{7}+\frac{73271}{24426}a^{6}-\frac{60247}{24426}a^{5}+\frac{10724}{12213}a^{4}+\frac{5135}{1357}a^{3}+\frac{361}{8142}a^{2}-\frac{109}{1357}a+\frac{629}{1357}$, $\frac{5513}{293112}a^{17}+\frac{1009}{146556}a^{16}+\frac{53}{16284}a^{15}-\frac{103675}{293112}a^{14}-\frac{1507}{12213}a^{13}-\frac{2027}{36639}a^{12}-\frac{48685}{73278}a^{11}-\frac{12769}{36639}a^{10}-\frac{5809}{24426}a^{9}-\frac{443495}{73278}a^{8}-\frac{31991}{12213}a^{7}-\frac{76175}{73278}a^{6}-\frac{823639}{73278}a^{5}-\frac{75116}{12213}a^{4}-\frac{35968}{12213}a^{3}-\frac{18455}{8142}a^{2}-\frac{13127}{4071}a-\frac{4987}{1357}$, $\frac{47}{2484}a^{17}-\frac{85}{4071}a^{16}-\frac{53}{293112}a^{15}-\frac{283}{828}a^{14}+\frac{27415}{73278}a^{13}+\frac{703}{48852}a^{12}-\frac{385}{414}a^{11}+\frac{17683}{16284}a^{10}-\frac{14185}{73278}a^{9}-\frac{1373}{207}a^{8}+\frac{542873}{73278}a^{7}-\frac{5464}{12213}a^{6}-\frac{9869}{621}a^{5}+\frac{144719}{8142}a^{4}-\frac{97477}{24426}a^{3}-\frac{223}{23}a^{2}+\frac{48302}{4071}a-\frac{8845}{1357}$, $\frac{2839}{97704}a^{17}-\frac{51247}{97704}a^{14}-\frac{7777}{5428}a^{11}-\frac{125383}{12213}a^{8}-\frac{294824}{12213}a^{5}-\frac{125801}{8142}a^{2}$
|
| |
| Regulator: | \( 6009745.31026225 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 6009745.31026225 \cdot 6}{2\cdot\sqrt{5355700839936000000000000000}}\cr\approx \mathstrut & 2.39369110030110 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{15}) \), 3.1.675.1, 3.1.108.1, 3.1.300.1, 3.1.2700.1, 6.2.437400000.2, 6.2.21600000.1, 6.2.69984000.1, 6.2.1749600000.1, 9.1.59049000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.0.1785233613312000000000000000.3 |
| Minimal sibling: | 18.0.1785233613312000000000000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.8a1.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $$[2]_{3}^{2}$$ |
| 2.2.6.16a1.5 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$ | $6$ | $2$ | $16$ | $D_6$ | $$[2]_{3}^{2}$$ | |
|
\(3\)
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(5\)
| 5.1.6.5a1.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |
| 5.2.6.10a1.2 | $x^{12} + 24 x^{11} + 252 x^{10} + 1520 x^{9} + 5820 x^{8} + 14784 x^{7} + 25376 x^{6} + 29568 x^{5} + 23280 x^{4} + 12160 x^{3} + 4032 x^{2} + 768 x + 69$ | $6$ | $2$ | $10$ | $D_6$ | $$[\ ]_{6}^{2}$$ |