Normalized defining polynomial
\( x^{18} - 2694 x^{16} - 3336 x^{15} + 2597787 x^{14} + 8641692 x^{13} - 1119005570 x^{12} + \cdots - 89\!\cdots\!52 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(290870170556598330269359394760370258478274982077485285376\)
\(\medspace = 2^{18}\cdot 3^{24}\cdot 197^{8}\cdot 229^{9}\)
|
| |
| Root discriminant: | \(1370.48\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(197\), \(229\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{229}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{788}a^{9}+\frac{16}{197}a^{7}-\frac{46}{197}a^{6}-\frac{13}{197}a^{5}+\frac{45}{394}a^{4}-\frac{63}{788}a^{3}-\frac{1}{2}a$, $\frac{1}{1576}a^{10}-\frac{1}{1576}a^{9}+\frac{8}{197}a^{8}-\frac{51}{1576}a^{7}-\frac{131}{788}a^{6}+\frac{339}{1576}a^{5}-\frac{153}{1576}a^{4}+\frac{65}{394}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{1576}a^{11}-\frac{1}{1576}a^{9}+\frac{13}{1576}a^{8}-\frac{75}{1576}a^{7}+\frac{33}{1576}a^{6}-\frac{4}{197}a^{5}+\frac{651}{1576}a^{4}+\frac{44}{197}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{310472}a^{12}+\frac{8}{38809}a^{10}-\frac{23}{38809}a^{9}-\frac{19949}{310472}a^{8}+\frac{15411}{155236}a^{7}+\frac{16483}{77618}a^{6}-\frac{223}{788}a^{5}+\frac{677}{1576}a^{4}-\frac{135}{788}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{3104720}a^{13}+\frac{1}{776180}a^{12}+\frac{213}{776180}a^{11}+\frac{43}{155236}a^{10}+\frac{7}{15760}a^{9}+\frac{2233}{77618}a^{8}+\frac{90251}{776180}a^{7}+\frac{86353}{388090}a^{6}+\frac{973}{15760}a^{5}+\frac{771}{1970}a^{4}-\frac{501}{1576}a^{3}-\frac{3}{20}a^{2}+\frac{1}{10}a-\frac{2}{5}$, $\frac{1}{6209440}a^{14}-\frac{1}{1552360}a^{12}+\frac{87}{388090}a^{11}-\frac{661}{6209440}a^{10}-\frac{247}{776180}a^{9}+\frac{5052}{194045}a^{8}+\frac{140507}{1552360}a^{7}-\frac{23847}{1241888}a^{6}+\frac{1709}{7880}a^{5}-\frac{4831}{15760}a^{4}-\frac{961}{7880}a^{3}+\frac{1}{10}a^{2}-\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{1223259680}a^{15}+\frac{2}{38226865}a^{13}+\frac{151}{305814920}a^{12}-\frac{35037}{244651936}a^{11}-\frac{76709}{305814920}a^{10}-\frac{175001}{305814920}a^{9}+\frac{92131}{1552360}a^{8}+\frac{428921}{6209440}a^{7}+\frac{95529}{776180}a^{6}+\frac{6993}{15760}a^{5}-\frac{57}{788}a^{4}+\frac{1767}{3940}a^{3}+\frac{1}{4}a^{2}-\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{31804751680}a^{16}+\frac{607}{7951187920}a^{14}-\frac{417}{3975593960}a^{13}+\frac{16299}{31804751680}a^{12}-\frac{93257}{7951187920}a^{11}+\frac{308043}{7951187920}a^{10}-\frac{11677}{40361360}a^{9}+\frac{2759269}{161445440}a^{8}+\frac{26937}{40361360}a^{7}-\frac{417513}{6209440}a^{6}+\frac{42599}{102440}a^{5}+\frac{4929}{102440}a^{4}-\frac{16521}{102440}a^{3}-\frac{87}{260}a^{2}-\frac{63}{130}a-\frac{2}{5}$, $\frac{1}{14\cdots 00}a^{17}-\frac{77\cdots 83}{56\cdots 00}a^{16}-\frac{13\cdots 97}{14\cdots 80}a^{15}+\frac{23\cdots 31}{36\cdots 00}a^{14}+\frac{17\cdots 67}{29\cdots 60}a^{13}-\frac{96\cdots 39}{73\cdots 00}a^{12}+\frac{11\cdots 17}{73\cdots 00}a^{11}-\frac{48\cdots 07}{15\cdots 00}a^{10}+\frac{40\cdots 89}{14\cdots 00}a^{9}-\frac{31\cdots 69}{37\cdots 00}a^{8}-\frac{67\cdots 41}{71\cdots 00}a^{7}+\frac{27\cdots 43}{11\cdots 50}a^{6}-\frac{26\cdots 83}{18\cdots 60}a^{5}-\frac{85\cdots 41}{47\cdots 00}a^{4}+\frac{14\cdots 48}{29\cdots 75}a^{3}-\frac{26\cdots 46}{15\cdots 75}a^{2}-\frac{18\cdots 71}{50\cdots 25}a+\frac{66\cdots 51}{88\cdots 75}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{12\cdots 79}{29\cdots 00}a^{17}-\frac{12\cdots 09}{58\cdots 00}a^{16}-\frac{34\cdots 31}{29\cdots 80}a^{15}+\frac{12\cdots 61}{29\cdots 00}a^{14}+\frac{65\cdots 29}{58\cdots 60}a^{13}-\frac{89\cdots 59}{58\cdots 00}a^{12}-\frac{43\cdots 52}{90\cdots 75}a^{11}-\frac{27\cdots 17}{29\cdots 00}a^{10}+\frac{29\cdots 01}{29\cdots 00}a^{9}+\frac{16\cdots 31}{29\cdots 00}a^{8}-\frac{67\cdots 53}{73\cdots 00}a^{7}-\frac{31\cdots 23}{36\cdots 00}a^{6}+\frac{12\cdots 01}{93\cdots 90}a^{5}+\frac{14\cdots 79}{37\cdots 00}a^{4}+\frac{31\cdots 73}{23\cdots 75}a^{3}+\frac{23\cdots 43}{23\cdots 50}a^{2}-\frac{17\cdots 14}{11\cdots 75}a-\frac{15\cdots 61}{11\cdots 75}$, $\frac{12\cdots 79}{29\cdots 00}a^{17}-\frac{12\cdots 09}{58\cdots 00}a^{16}-\frac{34\cdots 31}{29\cdots 80}a^{15}+\frac{12\cdots 61}{29\cdots 00}a^{14}+\frac{65\cdots 29}{58\cdots 60}a^{13}-\frac{89\cdots 59}{58\cdots 00}a^{12}-\frac{43\cdots 52}{90\cdots 75}a^{11}-\frac{27\cdots 17}{29\cdots 00}a^{10}+\frac{29\cdots 01}{29\cdots 00}a^{9}+\frac{16\cdots 31}{29\cdots 00}a^{8}-\frac{67\cdots 53}{73\cdots 00}a^{7}-\frac{31\cdots 23}{36\cdots 00}a^{6}+\frac{12\cdots 01}{93\cdots 90}a^{5}+\frac{14\cdots 79}{37\cdots 00}a^{4}+\frac{31\cdots 73}{23\cdots 75}a^{3}+\frac{23\cdots 43}{23\cdots 50}a^{2}-\frac{17\cdots 14}{11\cdots 75}a-\frac{15\cdots 11}{11\cdots 75}$, $\frac{44\cdots 79}{37\cdots 00}a^{17}-\frac{83\cdots 93}{94\cdots 00}a^{16}-\frac{11\cdots 63}{37\cdots 40}a^{15}+\frac{91\cdots 17}{47\cdots 00}a^{14}+\frac{21\cdots 41}{75\cdots 80}a^{13}-\frac{54\cdots 89}{47\cdots 00}a^{12}-\frac{23\cdots 37}{18\cdots 00}a^{11}+\frac{92\cdots 73}{16\cdots 00}a^{10}+\frac{96\cdots 11}{37\cdots 00}a^{9}+\frac{19\cdots 51}{24\cdots 00}a^{8}-\frac{58\cdots 67}{24\cdots 00}a^{7}-\frac{19\cdots 67}{12\cdots 00}a^{6}+\frac{28\cdots 63}{48\cdots 80}a^{5}+\frac{47\cdots 53}{60\cdots 00}a^{4}+\frac{64\cdots 43}{30\cdots 00}a^{3}+\frac{16\cdots 19}{15\cdots 00}a^{2}-\frac{17\cdots 77}{77\cdots 50}a-\frac{68\cdots 99}{38\cdots 25}$, $\frac{45\cdots 23}{75\cdots 80}a^{17}-\frac{35\cdots 47}{37\cdots 40}a^{16}-\frac{12\cdots 59}{75\cdots 28}a^{15}+\frac{10\cdots 01}{18\cdots 20}a^{14}+\frac{11\cdots 53}{75\cdots 80}a^{13}+\frac{20\cdots 01}{75\cdots 28}a^{12}-\frac{25\cdots 09}{37\cdots 40}a^{11}-\frac{25\cdots 59}{80\cdots 20}a^{10}+\frac{10\cdots 07}{75\cdots 80}a^{9}+\frac{44\cdots 39}{38\cdots 24}a^{8}-\frac{29\cdots 83}{24\cdots 40}a^{7}-\frac{74\cdots 01}{48\cdots 80}a^{6}+\frac{19\cdots 47}{48\cdots 80}a^{5}+\frac{15\cdots 77}{24\cdots 40}a^{4}+\frac{16\cdots 19}{60\cdots 60}a^{3}+\frac{17\cdots 33}{77\cdots 45}a^{2}-\frac{45\cdots 57}{15\cdots 90}a-\frac{21\cdots 33}{77\cdots 45}$, $\frac{29\cdots 93}{94\cdots 00}a^{17}-\frac{97\cdots 43}{18\cdots 00}a^{16}-\frac{14\cdots 13}{18\cdots 20}a^{15}+\frac{11\cdots 17}{94\cdots 00}a^{14}+\frac{26\cdots 01}{37\cdots 64}a^{13}-\frac{18\cdots 33}{18\cdots 00}a^{12}-\frac{26\cdots 33}{94\cdots 00}a^{11}+\frac{48\cdots 89}{16\cdots 00}a^{10}+\frac{55\cdots 57}{94\cdots 00}a^{9}-\frac{37\cdots 83}{96\cdots 00}a^{8}-\frac{32\cdots 57}{48\cdots 00}a^{7}+\frac{45\cdots 73}{24\cdots 00}a^{6}+\frac{46\cdots 33}{12\cdots 12}a^{5}-\frac{40\cdots 07}{12\cdots 00}a^{4}-\frac{48\cdots 07}{60\cdots 00}a^{3}-\frac{18\cdots 33}{15\cdots 00}a^{2}+\frac{33\cdots 12}{38\cdots 25}a+\frac{42\cdots 03}{38\cdots 25}$, $\frac{13\cdots 63}{11\cdots 00}a^{17}-\frac{54\cdots 17}{56\cdots 00}a^{16}-\frac{34\cdots 83}{11\cdots 60}a^{15}+\frac{30\cdots 39}{14\cdots 00}a^{14}+\frac{64\cdots 57}{22\cdots 20}a^{13}-\frac{77\cdots 77}{56\cdots 00}a^{12}-\frac{67\cdots 89}{56\cdots 00}a^{11}+\frac{73\cdots 81}{47\cdots 00}a^{10}+\frac{28\cdots 47}{11\cdots 00}a^{9}+\frac{17\cdots 93}{28\cdots 00}a^{8}-\frac{17\cdots 59}{71\cdots 00}a^{7}-\frac{19\cdots 91}{14\cdots 00}a^{6}+\frac{96\cdots 09}{14\cdots 20}a^{5}+\frac{16\cdots 27}{22\cdots 75}a^{4}+\frac{15\cdots 41}{91\cdots 00}a^{3}+\frac{64\cdots 77}{11\cdots 75}a^{2}-\frac{90\cdots 74}{50\cdots 25}a-\frac{10\cdots 41}{88\cdots 75}$, $\frac{26\cdots 31}{31\cdots 00}a^{17}-\frac{10\cdots 93}{12\cdots 00}a^{16}-\frac{41\cdots 41}{19\cdots 30}a^{15}+\frac{31\cdots 07}{15\cdots 00}a^{14}+\frac{24\cdots 21}{12\cdots 32}a^{13}-\frac{20\cdots 29}{15\cdots 00}a^{12}-\frac{30\cdots 27}{39\cdots 00}a^{11}+\frac{58\cdots 29}{27\cdots 00}a^{10}+\frac{50\cdots 79}{31\cdots 00}a^{9}+\frac{17\cdots 21}{81\cdots 00}a^{8}-\frac{96\cdots 29}{62\cdots 00}a^{7}-\frac{62\cdots 99}{81\cdots 00}a^{6}+\frac{17\cdots 21}{41\cdots 60}a^{5}+\frac{86\cdots 83}{20\cdots 00}a^{4}+\frac{49\cdots 39}{51\cdots 00}a^{3}+\frac{42\cdots 71}{13\cdots 50}a^{2}-\frac{52\cdots 01}{50\cdots 25}a-\frac{27\cdots 73}{38\cdots 25}$, $\frac{49\cdots 79}{29\cdots 36}a^{17}-\frac{52\cdots 61}{22\cdots 72}a^{16}-\frac{20\cdots 69}{45\cdots 99}a^{15}+\frac{11\cdots 47}{14\cdots 68}a^{14}+\frac{64\cdots 21}{14\cdots 80}a^{13}+\frac{12\cdots 69}{14\cdots 80}a^{12}-\frac{69\cdots 57}{36\cdots 20}a^{11}-\frac{23\cdots 47}{24\cdots 52}a^{10}+\frac{58\cdots 39}{14\cdots 80}a^{9}+\frac{48\cdots 67}{14\cdots 88}a^{8}-\frac{97\cdots 23}{28\cdots 40}a^{7}-\frac{82\cdots 67}{18\cdots 60}a^{6}+\frac{78\cdots 91}{94\cdots 80}a^{5}+\frac{17\cdots 91}{94\cdots 80}a^{4}+\frac{72\cdots 77}{94\cdots 88}a^{3}+\frac{77\cdots 69}{12\cdots 60}a^{2}-\frac{82\cdots 56}{10\cdots 85}a-\frac{13\cdots 51}{17\cdots 35}$, $\frac{24\cdots 47}{28\cdots 00}a^{17}-\frac{39\cdots 97}{56\cdots 00}a^{16}-\frac{63\cdots 69}{28\cdots 40}a^{15}+\frac{43\cdots 23}{28\cdots 00}a^{14}+\frac{11\cdots 37}{56\cdots 80}a^{13}-\frac{54\cdots 47}{56\cdots 00}a^{12}-\frac{30\cdots 89}{35\cdots 00}a^{11}+\frac{48\cdots 31}{47\cdots 00}a^{10}+\frac{52\cdots 13}{28\cdots 00}a^{9}+\frac{10\cdots 71}{22\cdots 00}a^{8}-\frac{12\cdots 39}{71\cdots 00}a^{7}-\frac{74\cdots 33}{71\cdots 00}a^{6}+\frac{17\cdots 99}{36\cdots 80}a^{5}+\frac{19\cdots 17}{36\cdots 00}a^{4}+\frac{56\cdots 03}{45\cdots 50}a^{3}+\frac{51\cdots 22}{11\cdots 75}a^{2}-\frac{67\cdots 94}{50\cdots 25}a-\frac{83\cdots 71}{88\cdots 75}$, $\frac{59\cdots 61}{73\cdots 00}a^{17}-\frac{19\cdots 73}{28\cdots 00}a^{16}-\frac{19\cdots 41}{91\cdots 80}a^{15}-\frac{32\cdots 53}{36\cdots 00}a^{14}+\frac{30\cdots 19}{14\cdots 80}a^{13}+\frac{19\cdots 91}{36\cdots 00}a^{12}-\frac{20\cdots 53}{22\cdots 50}a^{11}-\frac{31\cdots 31}{62\cdots 00}a^{10}+\frac{13\cdots 29}{73\cdots 00}a^{9}+\frac{31\cdots 61}{18\cdots 00}a^{8}-\frac{16\cdots 23}{11\cdots 00}a^{7}-\frac{41\cdots 19}{18\cdots 00}a^{6}-\frac{36\cdots 49}{23\cdots 22}a^{5}+\frac{41\cdots 43}{47\cdots 00}a^{4}+\frac{10\cdots 73}{23\cdots 00}a^{3}+\frac{37\cdots 37}{60\cdots 00}a^{2}-\frac{15\cdots 22}{50\cdots 25}a-\frac{76\cdots 33}{88\cdots 75}$, $\frac{20\cdots 51}{29\cdots 36}a^{17}-\frac{62\cdots 03}{11\cdots 60}a^{16}-\frac{16\cdots 07}{91\cdots 80}a^{15}+\frac{18\cdots 19}{14\cdots 68}a^{14}+\frac{25\cdots 41}{14\cdots 80}a^{13}-\frac{11\cdots 17}{14\cdots 80}a^{12}-\frac{26\cdots 71}{36\cdots 20}a^{11}+\frac{86\cdots 09}{12\cdots 60}a^{10}+\frac{45\cdots 71}{29\cdots 36}a^{9}+\frac{59\cdots 53}{14\cdots 88}a^{8}-\frac{42\cdots 91}{28\cdots 40}a^{7}-\frac{81\cdots 19}{93\cdots 80}a^{6}+\frac{37\cdots 99}{94\cdots 80}a^{5}+\frac{83\cdots 23}{18\cdots 76}a^{4}+\frac{49\cdots 07}{47\cdots 40}a^{3}+\frac{45\cdots 49}{12\cdots 60}a^{2}-\frac{11\cdots 07}{10\cdots 85}a-\frac{28\cdots 51}{35\cdots 27}$, $\frac{14\cdots 89}{14\cdots 00}a^{17}-\frac{15\cdots 93}{14\cdots 00}a^{16}-\frac{36\cdots 51}{14\cdots 80}a^{15}+\frac{93\cdots 79}{36\cdots 00}a^{14}+\frac{64\cdots 67}{29\cdots 60}a^{13}-\frac{63\cdots 43}{36\cdots 00}a^{12}-\frac{64\cdots 57}{73\cdots 00}a^{11}+\frac{50\cdots 27}{15\cdots 00}a^{10}+\frac{26\cdots 61}{14\cdots 00}a^{9}+\frac{23\cdots 07}{18\cdots 00}a^{8}-\frac{25\cdots 53}{14\cdots 00}a^{7}-\frac{14\cdots 73}{18\cdots 00}a^{6}+\frac{95\cdots 73}{18\cdots 60}a^{5}+\frac{21\cdots 31}{47\cdots 00}a^{4}+\frac{11\cdots 03}{11\cdots 00}a^{3}+\frac{18\cdots 59}{60\cdots 00}a^{2}-\frac{10\cdots 33}{10\cdots 50}a-\frac{66\cdots 41}{88\cdots 75}$, $\frac{90\cdots 51}{14\cdots 00}a^{17}-\frac{82\cdots 57}{14\cdots 00}a^{16}-\frac{23\cdots 83}{14\cdots 80}a^{15}+\frac{24\cdots 63}{18\cdots 00}a^{14}+\frac{43\cdots 93}{29\cdots 60}a^{13}-\frac{32\cdots 77}{36\cdots 00}a^{12}-\frac{45\cdots 13}{73\cdots 00}a^{11}+\frac{93\cdots 77}{62\cdots 00}a^{10}+\frac{19\cdots 59}{14\cdots 00}a^{9}+\frac{31\cdots 93}{18\cdots 00}a^{8}-\frac{92\cdots 81}{71\cdots 00}a^{7}-\frac{54\cdots 01}{93\cdots 00}a^{6}+\frac{76\cdots 43}{18\cdots 60}a^{5}+\frac{19\cdots 53}{59\cdots 50}a^{4}+\frac{32\cdots 51}{59\cdots 50}a^{3}-\frac{11\cdots 27}{30\cdots 50}a^{2}-\frac{29\cdots 06}{50\cdots 25}a-\frac{25\cdots 89}{88\cdots 75}$, $\frac{16\cdots 71}{29\cdots 60}a^{17}-\frac{12\cdots 03}{28\cdots 40}a^{16}-\frac{21\cdots 91}{14\cdots 80}a^{15}+\frac{73\cdots 39}{73\cdots 40}a^{14}+\frac{40\cdots 61}{29\cdots 60}a^{13}-\frac{45\cdots 77}{73\cdots 40}a^{12}-\frac{83\cdots 93}{14\cdots 80}a^{11}+\frac{39\cdots 71}{62\cdots 80}a^{10}+\frac{35\cdots 87}{29\cdots 60}a^{9}+\frac{11\cdots 69}{37\cdots 20}a^{8}-\frac{64\cdots 43}{55\cdots 20}a^{7}-\frac{50\cdots 89}{74\cdots 44}a^{6}+\frac{59\cdots 53}{18\cdots 60}a^{5}+\frac{64\cdots 51}{18\cdots 76}a^{4}+\frac{97\cdots 69}{11\cdots 10}a^{3}+\frac{19\cdots 63}{60\cdots 30}a^{2}-\frac{17\cdots 13}{20\cdots 70}a-\frac{23\cdots 75}{35\cdots 27}$, $\frac{19\cdots 81}{29\cdots 60}a^{17}+\frac{74\cdots 29}{11\cdots 60}a^{16}-\frac{25\cdots 07}{14\cdots 80}a^{15}-\frac{72\cdots 33}{18\cdots 60}a^{14}+\frac{49\cdots 87}{29\cdots 60}a^{13}+\frac{10\cdots 33}{14\cdots 80}a^{12}-\frac{10\cdots 29}{14\cdots 80}a^{11}-\frac{67\cdots 87}{12\cdots 60}a^{10}+\frac{41\cdots 01}{29\cdots 60}a^{9}+\frac{12\cdots 19}{74\cdots 40}a^{8}-\frac{26\cdots 67}{28\cdots 40}a^{7}-\frac{74\cdots 03}{37\cdots 20}a^{6}-\frac{90\cdots 81}{18\cdots 60}a^{5}+\frac{31\cdots 29}{47\cdots 40}a^{4}+\frac{46\cdots 81}{94\cdots 88}a^{3}+\frac{78\cdots 41}{60\cdots 30}a^{2}+\frac{29\cdots 93}{20\cdots 70}a+\frac{10\cdots 17}{17\cdots 35}$, $\frac{65\cdots 57}{14\cdots 00}a^{17}-\frac{11\cdots 63}{28\cdots 00}a^{16}-\frac{17\cdots 41}{14\cdots 80}a^{15}+\frac{34\cdots 07}{36\cdots 00}a^{14}+\frac{33\cdots 31}{29\cdots 60}a^{13}-\frac{11\cdots 57}{18\cdots 00}a^{12}-\frac{35\cdots 11}{73\cdots 00}a^{11}+\frac{14\cdots 41}{15\cdots 00}a^{10}+\frac{15\cdots 33}{14\cdots 00}a^{9}+\frac{20\cdots 33}{93\cdots 00}a^{8}-\frac{41\cdots 01}{35\cdots 00}a^{7}-\frac{12\cdots 19}{18\cdots 00}a^{6}+\frac{64\cdots 43}{18\cdots 60}a^{5}+\frac{16\cdots 03}{47\cdots 00}a^{4}+\frac{25\cdots 36}{29\cdots 75}a^{3}+\frac{93\cdots 51}{30\cdots 50}a^{2}-\frac{92\cdots 29}{10\cdots 50}a-\frac{57\cdots 43}{88\cdots 75}$, $\frac{73\cdots 91}{14\cdots 00}a^{17}-\frac{99\cdots 53}{56\cdots 00}a^{16}-\frac{19\cdots 69}{14\cdots 80}a^{15}+\frac{54\cdots 03}{18\cdots 00}a^{14}+\frac{36\cdots 13}{29\cdots 60}a^{13}+\frac{18\cdots 51}{73\cdots 00}a^{12}-\frac{39\cdots 03}{73\cdots 00}a^{11}-\frac{11\cdots 43}{62\cdots 00}a^{10}+\frac{15\cdots 79}{14\cdots 00}a^{9}+\frac{28\cdots 21}{37\cdots 00}a^{8}-\frac{12\cdots 07}{14\cdots 00}a^{7}-\frac{19\cdots 47}{18\cdots 00}a^{6}-\frac{82\cdots 01}{18\cdots 60}a^{5}+\frac{47\cdots 61}{11\cdots 00}a^{4}+\frac{26\cdots 47}{11\cdots 00}a^{3}+\frac{30\cdots 61}{60\cdots 00}a^{2}+\frac{53\cdots 93}{10\cdots 50}a+\frac{17\cdots 71}{88\cdots 75}$
|
| |
| Regulator: | \( 54573832318800000000000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 54573832318800000000000 \cdot 6}{2\cdot\sqrt{290870170556598330269359394760370258478274982077485285376}}\cr\approx \mathstrut & 2.51649479259392 \end{aligned}\] (assuming GRH)
Galois group
$C_3^4:S_4$ (as 18T360):
| A solvable group of order 1944 |
| The 30 conjugacy class representatives for $C_3^4:S_4$ |
| Character table for $C_3^4:S_4$ |
Intermediate fields
| 3.3.229.1, 6.6.768575296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{6}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.9.0.1}{9} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | ${\href{/padicField/19.9.0.1}{9} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ | |
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
|
\(3\)
| 3.3.3.12a9.3 | $x^{9} + 6 x^{8} + 9 x^{7} + 27 x^{6} + 36 x^{5} + 42 x^{4} + 47 x^{3} + 30 x^{2} + 9 x + 22$ | $3$ | $3$ | $12$ | $C_3 \wr C_3 $ | $$[2, 2, 2]^{3}$$ |
| 3.3.3.12a9.3 | $x^{9} + 6 x^{8} + 9 x^{7} + 27 x^{6} + 36 x^{5} + 42 x^{4} + 47 x^{3} + 30 x^{2} + 9 x + 22$ | $3$ | $3$ | $12$ | $C_3 \wr C_3 $ | $$[2, 2, 2]^{3}$$ | |
|
\(197\)
| 197.6.1.0a1.1 | $x^{6} + x^{4} + 124 x^{3} + 79 x^{2} + 173 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |
| 197.2.3.4a1.1 | $x^{6} + 576 x^{5} + 110598 x^{4} + 7080192 x^{3} + 221196 x^{2} + 2501 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
| 197.2.3.4a1.1 | $x^{6} + 576 x^{5} + 110598 x^{4} + 7080192 x^{3} + 221196 x^{2} + 2501 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
|
\(229\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |