Normalized defining polynomial
\( x^{18} - 12x^{16} + 70x^{14} - 261x^{12} + 637x^{10} - 972x^{8} + 874x^{6} - 427x^{4} + 98x^{2} - 7 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[14, 2]$ |
| |
| Discriminant: |
\(71020039461348097887305728\)
\(\medspace = 2^{18}\cdot 7^{13}\cdot 52879^{2}\)
|
| |
| Root discriminant: | \(27.30\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(7\), \(52879\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{7}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{239}a^{16}+\frac{62}{239}a^{14}+\frac{117}{239}a^{12}+\frac{32}{239}a^{10}-\frac{102}{239}a^{8}+\frac{84}{239}a^{6}-\frac{80}{239}a^{4}+\frac{106}{239}a^{2}+\frac{55}{239}$, $\frac{1}{239}a^{17}+\frac{62}{239}a^{15}+\frac{117}{239}a^{13}+\frac{32}{239}a^{11}-\frac{102}{239}a^{9}+\frac{84}{239}a^{7}-\frac{80}{239}a^{5}+\frac{106}{239}a^{3}+\frac{55}{239}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3767}{239}a^{16}-\frac{42969}{239}a^{14}+\frac{238306}{239}a^{12}-\frac{842865}{239}a^{10}+\frac{1904669}{239}a^{8}-\frac{2547509}{239}a^{6}+\frac{1810205}{239}a^{4}-\frac{561717}{239}a^{2}+\frac{46338}{239}$, $\frac{1991}{239}a^{16}-\frac{22826}{239}a^{14}+\frac{127070}{239}a^{12}-\frac{450855}{239}a^{10}+\frac{1023227}{239}a^{8}-\frac{1376218}{239}a^{6}+\frac{983379}{239}a^{4}-\frac{306389}{239}a^{2}+\frac{25377}{239}$, $\frac{4756}{239}a^{16}-\frac{54307}{239}a^{14}+\frac{301439}{239}a^{12}-\frac{1066947}{239}a^{10}+\frac{2413480}{239}a^{8}-\frac{3232579}{239}a^{6}+\frac{2300383}{239}a^{4}-\frac{713808}{239}a^{2}+\frac{58430}{239}$, $\frac{1532}{239}a^{16}-\frac{17585}{239}a^{14}+\frac{97984}{239}a^{12}-\frac{347955}{239}a^{10}+\frac{790654}{239}a^{8}-\frac{1065356}{239}a^{6}+\frac{763413}{239}a^{4}-\frac{238650}{239}a^{2}+\frac{19730}{239}$, $\frac{543}{239}a^{16}-\frac{6247}{239}a^{14}+\frac{34851}{239}a^{12}-\frac{123873}{239}a^{10}+\frac{281843}{239}a^{8}-\frac{380286}{239}a^{6}+\frac{273235}{239}a^{4}-\frac{86798}{239}a^{2}+\frac{7638}{239}$, $\frac{2622}{239}a^{16}-\frac{29831}{239}a^{14}+\frac{165047}{239}a^{12}-\frac{582428}{239}a^{10}+\frac{1311868}{239}a^{8}-\frac{1745527}{239}a^{6}+\frac{1231171}{239}a^{4}-\frac{378601}{239}a^{2}+\frac{30685}{239}$, $\frac{989}{239}a^{16}-\frac{11338}{239}a^{14}+\frac{63133}{239}a^{12}-\frac{224082}{239}a^{10}+\frac{508811}{239}a^{8}-\frac{685070}{239}a^{6}+\frac{490178}{239}a^{4}-\frac{152091}{239}a^{2}+\frac{12331}{239}$, $\frac{1688}{239}a^{17}-\frac{19385}{239}a^{15}+\frac{108110}{239}a^{13}-\frac{384310}{239}a^{11}+\frac{874644}{239}a^{9}-\frac{1182268}{239}a^{7}+\frac{852269}{239}a^{5}-\frac{269914}{239}a^{3}+\frac{23530}{239}a-1$, $a^{17}+\frac{3469}{239}a^{16}-11a^{15}-\frac{39935}{239}a^{14}+59a^{13}+\frac{223038}{239}a^{12}-202a^{11}-\frac{793607}{239}a^{10}+435a^{9}+\frac{1808156}{239}a^{8}-537a^{7}-\frac{2445154}{239}a^{6}+337a^{5}+\frac{1758043}{239}a^{4}-90a^{3}-\frac{550046}{239}a^{2}+8a+\frac{45244}{239}$, $\frac{3767}{239}a^{17}-\frac{846}{239}a^{16}-\frac{42969}{239}a^{15}+\frac{9688}{239}a^{14}+\frac{238306}{239}a^{13}-\frac{53811}{239}a^{12}-\frac{842865}{239}a^{11}+\frac{190418}{239}a^{10}+\frac{1904669}{239}a^{9}-\frac{430426}{239}a^{8}-\frac{2547509}{239}a^{7}+\frac{574236}{239}a^{6}+\frac{1810205}{239}a^{5}-\frac{404345}{239}a^{4}-\frac{561717}{239}a^{3}+\frac{123273}{239}a^{2}+\frac{46338}{239}a-\frac{9963}{239}$, $\frac{1991}{239}a^{17}-\frac{489}{239}a^{16}-\frac{22826}{239}a^{15}+\frac{5771}{239}a^{14}+\frac{127070}{239}a^{13}-\frac{32835}{239}a^{12}-\frac{450855}{239}a^{11}+\frac{118670}{239}a^{10}+\frac{1023227}{239}a^{9}-\frac{276118}{239}a^{8}-\frac{1376218}{239}a^{7}+\frac{383866}{239}a^{6}+\frac{983379}{239}a^{5}-\frac{284486}{239}a^{4}-\frac{306389}{239}a^{3}+\frac{91566}{239}a^{2}+\frac{25377}{239}a-\frac{7775}{239}$, $\frac{543}{239}a^{17}-\frac{1991}{239}a^{16}-\frac{6247}{239}a^{15}+\frac{22826}{239}a^{14}+\frac{34851}{239}a^{13}-\frac{127070}{239}a^{12}-\frac{123873}{239}a^{11}+\frac{450855}{239}a^{10}+\frac{281843}{239}a^{9}-\frac{1023227}{239}a^{8}-\frac{380286}{239}a^{7}+\frac{1376218}{239}a^{6}+\frac{273235}{239}a^{5}-\frac{983379}{239}a^{4}-\frac{86798}{239}a^{3}+\frac{306389}{239}a^{2}+\frac{7877}{239}a-\frac{25377}{239}$, $\frac{2710}{239}a^{17}+\frac{1991}{239}a^{16}-\frac{30828}{239}a^{15}-\frac{22826}{239}a^{14}+\frac{170563}{239}a^{13}+\frac{127070}{239}a^{12}-\frac{601839}{239}a^{11}-\frac{450855}{239}a^{10}+\frac{1355233}{239}a^{9}+\frac{1023227}{239}a^{8}-\frac{1801948}{239}a^{7}-\frac{1376218}{239}a^{6}+\frac{1266673}{239}a^{5}+\frac{983379}{239}a^{4}-\frac{383613}{239}a^{3}-\frac{306389}{239}a^{2}+\frac{29311}{239}a+\frac{25616}{239}$, $\frac{8313}{239}a^{17}-\frac{95000}{239}a^{15}+\frac{527603}{239}a^{13}-\frac{1868254}{239}a^{11}+\frac{4228434}{239}a^{9}-\frac{5666756}{239}a^{7}+\frac{4032983}{239}a^{5}-\frac{1249268}{239}a^{3}+\frac{100866}{239}a-1$, $\frac{2534}{239}a^{17}-\frac{1830}{239}a^{16}-\frac{29073}{239}a^{15}+\frac{20619}{239}a^{14}+\frac{161921}{239}a^{13}-\frac{113252}{239}a^{12}-\frac{574728}{239}a^{11}+\frac{397213}{239}a^{10}+\frac{1305070}{239}a^{9}-\frac{887167}{239}a^{8}-\frac{1756504}{239}a^{7}+\frac{1167711}{239}a^{6}+\frac{1256614}{239}a^{5}-\frac{815575}{239}a^{4}-\frac{393187}{239}a^{3}+\frac{250321}{239}a^{2}+\frac{33254}{239}a-\frac{20824}{239}$
|
| |
| Regulator: | \( 4750220.74631 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{2}\cdot 4750220.74631 \cdot 1}{2\cdot\sqrt{71020039461348097887305728}}\cr\approx \mathstrut & 0.182294269987 \end{aligned}\] (assuming GRH)
Galois group
$S_4^3.C_6$ (as 18T768):
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for $S_4^3.C_6$ |
| Character table for $S_4^3.C_6$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.7.6221161471.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.12.3755468666676626068182839590912.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ | $18$ | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | $18$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.9.0.1}{9} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.9.2.18a11.1 | $x^{18} + 2 x^{15} + 2 x^{13} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + x^{8} + 2 x^{7} + 4 x^{6} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 3$ | $2$ | $9$ | $18$ | 18T264 | $$[2, 2, 2, 2, 2, 2, 2]^{9}$$ |
|
\(7\)
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.4.3.8a1.3 | $x^{12} + 15 x^{10} + 12 x^{9} + 84 x^{8} + 120 x^{7} + 263 x^{6} + 372 x^{5} + 492 x^{4} + 424 x^{3} + 279 x^{2} + 108 x + 34$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ | |
|
\(52879\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |