Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 411 x^{14} - 861 x^{13} + 1359 x^{12} - 1407 x^{11} + 264 x^{10} + 2354 x^{9} - 5535 x^{8} + 7515 x^{7} - 4059 x^{6} - 4305 x^{5} + 16131 x^{4} - 20937 x^{3} + 14379 x^{2} - 5190 x + 811 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8549394874383196572862347=-\,3^{31}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{3}{10} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{10} + \frac{1}{10} a^{6} + \frac{1}{10} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{10}$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} - \frac{3}{20} a^{6} + \frac{1}{5} a^{5} + \frac{9}{20} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} - \frac{3}{20}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} - \frac{3}{20} a^{7} + \frac{1}{5} a^{6} + \frac{9}{20} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{3}{20} a$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{10} - \frac{1}{20} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{9}{20} a^{4} + \frac{3}{10} a^{3} + \frac{9}{20} a^{2} - \frac{3}{10} a + \frac{1}{4}$, $\frac{1}{220} a^{15} - \frac{1}{110} a^{14} + \frac{1}{55} a^{13} - \frac{3}{220} a^{12} - \frac{3}{220} a^{11} - \frac{1}{20} a^{10} - \frac{1}{44} a^{9} + \frac{3}{110} a^{8} - \frac{27}{110} a^{7} + \frac{7}{220} a^{6} + \frac{21}{44} a^{5} - \frac{63}{220} a^{4} + \frac{103}{220} a^{3} - \frac{26}{55} a^{2} - \frac{57}{220} a + \frac{93}{220}$, $\frac{1}{1210003300} a^{16} - \frac{2}{302500825} a^{15} + \frac{5686344}{302500825} a^{14} + \frac{22283003}{1210003300} a^{13} + \frac{32902}{302500825} a^{12} - \frac{48468391}{1210003300} a^{11} - \frac{705579}{121000330} a^{10} + \frac{5620591}{302500825} a^{9} + \frac{27354359}{605001650} a^{8} - \frac{189727097}{1210003300} a^{7} + \frac{2771079}{121000330} a^{6} + \frac{13066167}{110000300} a^{5} + \frac{63315067}{302500825} a^{4} + \frac{56874853}{605001650} a^{3} - \frac{380730861}{1210003300} a^{2} - \frac{95317689}{1210003300} a + \frac{419206351}{1210003300}$, $\frac{1}{219010597300} a^{17} + \frac{41}{109505298650} a^{16} + \frac{88186389}{54752649325} a^{15} - \frac{293570201}{109505298650} a^{14} - \frac{2663910857}{219010597300} a^{13} + \frac{2119382209}{219010597300} a^{12} + \frac{319661059}{43802119460} a^{11} - \frac{5392051771}{219010597300} a^{10} - \frac{3536951741}{109505298650} a^{9} - \frac{545229181}{109505298650} a^{8} + \frac{8115185843}{43802119460} a^{7} - \frac{38612413563}{219010597300} a^{6} + \frac{21279287663}{219010597300} a^{5} + \frac{88208851921}{219010597300} a^{4} + \frac{64658892139}{219010597300} a^{3} - \frac{24146316587}{109505298650} a^{2} - \frac{26299037576}{54752649325} a + \frac{12074426669}{43802119460}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{142478274}{54752649325} a^{17} - \frac{1211065329}{54752649325} a^{16} + \frac{1164716012}{10950529865} a^{15} - \frac{3891108774}{10950529865} a^{14} + \frac{49458012006}{54752649325} a^{13} - \frac{19974525194}{10950529865} a^{12} + \frac{148166499222}{54752649325} a^{11} - \frac{12233974344}{4977513575} a^{10} - \frac{19546183936}{54752649325} a^{9} + \frac{320886743151}{54752649325} a^{8} - \frac{640182526626}{54752649325} a^{7} + \frac{785562146878}{54752649325} a^{6} - \frac{237498764142}{54752649325} a^{5} - \frac{678971147157}{54752649325} a^{4} + \frac{1973970226214}{54752649325} a^{3} - \frac{189472903824}{4977513575} a^{2} + \frac{1171992574812}{54752649325} a - \frac{242868047207}{54752649325} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102362.355108 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1323.1 x3, 3.3.3969.2, 6.0.5250987.1, 6.0.964467.2 x2, 6.0.47258883.1, 9.3.1688134559643.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.964467.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |