Properties

Label 18.0.762...000.1
Degree $18$
Signature $[0, 9]$
Discriminant $-7.626\times 10^{24}$
Root discriminant \(24.12\)
Ramified primes $2,3,5$
Class number $1$
Class group trivial
Galois group $S_3 \times C_3$ (as 18T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27)
 
gp: K = bnfinit(y^18 - 9*y^15 + 46*y^12 - 171*y^9 + 388*y^6 - 171*y^3 + 27, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27)
 

\( x^{18} - 9x^{15} + 46x^{12} - 171x^{9} + 388x^{6} - 171x^{3} + 27 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-7625597484987000000000000\) \(\medspace = -\,2^{12}\cdot 3^{27}\cdot 5^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.12\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{3/2}5^{2/3}\approx 24.11840306298509$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Gal(K/\Q) }$:  $18$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11}a^{12}-\frac{5}{11}a^{9}-\frac{5}{11}a^{6}-\frac{3}{11}a^{3}+\frac{3}{11}$, $\frac{1}{11}a^{13}-\frac{5}{11}a^{10}-\frac{5}{11}a^{7}-\frac{3}{11}a^{4}+\frac{3}{11}a$, $\frac{1}{33}a^{14}+\frac{2}{11}a^{11}-\frac{5}{33}a^{8}-\frac{1}{11}a^{5}-\frac{8}{33}a^{2}$, $\frac{1}{89133}a^{15}-\frac{741}{29711}a^{12}+\frac{35659}{89133}a^{9}+\frac{10248}{29711}a^{6}+\frac{1051}{2409}a^{3}-\frac{14043}{29711}$, $\frac{1}{267399}a^{16}-\frac{247}{29711}a^{13}+\frac{35659}{267399}a^{10}+\frac{3416}{29711}a^{7}-\frac{1358}{7227}a^{4}-\frac{4681}{29711}a$, $\frac{1}{267399}a^{17}-\frac{247}{29711}a^{14}+\frac{35659}{267399}a^{11}+\frac{3416}{29711}a^{8}-\frac{1358}{7227}a^{5}-\frac{4681}{29711}a^{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{12293}{267399} a^{17} - \frac{3314}{8103} a^{14} + \frac{550997}{267399} a^{11} - \frac{673927}{89133} a^{8} + \frac{120707}{7227} a^{5} - \frac{452653}{89133} a^{2} \)  (order $18$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{119}{29711}a^{17}+\frac{172}{8103}a^{15}-\frac{2218}{89133}a^{14}-\frac{505}{2701}a^{12}+\frac{2851}{29711}a^{11}+\frac{7480}{8103}a^{9}-\frac{22864}{89133}a^{8}-\frac{9200}{2701}a^{6}+\frac{93}{803}a^{5}+\frac{1630}{219}a^{3}+\frac{198989}{89133}a^{2}-\frac{3403}{2701}$, $\frac{119}{29711}a^{17}-\frac{5774}{267399}a^{16}+\frac{172}{8103}a^{15}-\frac{2218}{89133}a^{14}+\frac{5452}{29711}a^{13}-\frac{505}{2701}a^{12}+\frac{2851}{29711}a^{11}-\frac{240926}{267399}a^{10}+\frac{7480}{8103}a^{9}-\frac{22864}{89133}a^{8}+\frac{95954}{29711}a^{7}-\frac{9200}{2701}a^{6}+\frac{93}{803}a^{5}-\frac{47507}{7227}a^{4}+\frac{1630}{219}a^{3}+\frac{198989}{89133}a^{2}+\frac{7290}{29711}a-\frac{6104}{2701}$, $\frac{1373}{267399}a^{16}-\frac{1506}{29711}a^{13}+\frac{74408}{267399}a^{10}-\frac{2589}{2701}a^{7}+\frac{13829}{7227}a^{4}-\frac{6736}{29711}a$, $\frac{356}{89133}a^{15}-\frac{1799}{29711}a^{12}+\frac{29615}{89133}a^{9}-\frac{3507}{2701}a^{6}+\frac{9302}{2409}a^{3}-\frac{53777}{29711}$, $\frac{11447}{267399}a^{17}-\frac{1742}{29711}a^{16}+\frac{298}{89133}a^{15}-\frac{36200}{89133}a^{14}+\frac{15438}{29711}a^{13}+\frac{664}{29711}a^{12}+\frac{550952}{267399}a^{11}-\frac{78709}{29711}a^{10}-\frac{4754}{89133}a^{9}-\frac{684329}{89133}a^{8}+\frac{282985}{29711}a^{7}+\frac{1389}{2701}a^{6}+\frac{128366}{7227}a^{5}-\frac{1573}{73}a^{4}-\frac{3257}{2409}a^{3}-\frac{583622}{89133}a^{2}+\frac{107887}{29711}a+\frac{44952}{29711}$, $\frac{14425}{267399}a^{17}+\frac{420}{29711}a^{16}-\frac{2273}{89133}a^{15}-\frac{13861}{29711}a^{14}-\frac{4516}{29711}a^{13}+\frac{6972}{29711}a^{12}+\frac{634669}{267399}a^{11}+\frac{21343}{29711}a^{10}-\frac{95834}{89133}a^{9}-\frac{260540}{29711}a^{8}-\frac{82031}{29711}a^{7}+\frac{126667}{29711}a^{6}+\frac{137932}{7227}a^{5}+\frac{4734}{803}a^{4}-\frac{20000}{2409}a^{3}-\frac{22447}{2701}a^{2}+\frac{8174}{29711}a+\frac{88454}{29711}$, $\frac{12704}{267399}a^{17}-\frac{6206}{89133}a^{16}-\frac{19}{1221}a^{15}-\frac{12831}{29711}a^{14}+\frac{17750}{29711}a^{13}+\frac{56}{407}a^{12}+\frac{597137}{267399}a^{11}-\frac{258017}{89133}a^{10}-\frac{754}{1221}a^{9}-\frac{22354}{2701}a^{8}+\frac{306572}{29711}a^{7}+\frac{69}{37}a^{6}+\frac{132188}{7227}a^{5}-\frac{53027}{2409}a^{4}-\frac{124}{33}a^{3}-\frac{177773}{29711}a^{2}+\frac{10103}{2701}a+\frac{898}{407}$, $\frac{38902}{267399}a^{17}-\frac{18478}{267399}a^{16}-\frac{322}{29711}a^{15}-\frac{10432}{8103}a^{14}+\frac{18283}{29711}a^{13}+\frac{2742}{29711}a^{12}+\frac{1739272}{267399}a^{11}-\frac{838063}{267399}a^{10}-\frac{13752}{29711}a^{9}-\frac{2128292}{89133}a^{8}+\frac{341848}{29711}a^{7}+\frac{53617}{29711}a^{6}+\frac{380857}{7227}a^{5}-\frac{186922}{7227}a^{4}-\frac{2768}{803}a^{3}-\frac{1517189}{89133}a^{2}+\frac{303907}{29711}a+\frac{17322}{29711}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2586019.54261 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 2586019.54261 \cdot 1}{18\cdot\sqrt{7625597484987000000000000}}\cr\approx \mathstrut & 0.794037793636 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^15 + 46*x^12 - 171*x^9 + 388*x^6 - 171*x^3 + 27);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times S_3$ (as 18T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3 \times C_3$
Character table for $S_3 \times C_3$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.300.1 x3, \(\Q(\zeta_{9})^+\), 6.0.270000.1, 6.0.196830000.1 x2, \(\Q(\zeta_{9})\), 9.3.1594323000000.6 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 6 sibling: 6.0.196830000.1
Degree 9 sibling: 9.3.1594323000000.6
Minimal sibling: 6.0.196830000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.3.0.1}{3} }^{6}$ ${\href{/padicField/17.2.0.1}{2} }^{9}$ ${\href{/padicField/19.3.0.1}{3} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.1.0.1}{1} }^{18}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.12.1$x^{18} + 10 x^{16} + 12 x^{15} + 28 x^{14} + 100 x^{13} + 92 x^{12} + 224 x^{11} + 640 x^{10} + 352 x^{9} + 736 x^{8} + 1760 x^{7} + 688 x^{6} + 1024 x^{5} + 1760 x^{4} + 448 x^{3} + 448 x^{2} + 320 x + 64$$3$$6$$12$$S_3 \times C_3$$[\ ]_{3}^{6}$
\(3\) Copy content Toggle raw display 3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
3.6.9.10$x^{6} + 6 x^{4} + 3$$6$$1$$9$$C_6$$[2]_{2}$
\(5\) Copy content Toggle raw display 5.18.12.1$x^{18} + 3 x^{16} + 42 x^{15} + 6 x^{14} + 54 x^{13} + 196 x^{12} - 114 x^{11} + 216 x^{10} - 3044 x^{9} - 516 x^{8} - 2670 x^{7} + 9991 x^{6} + 5898 x^{5} - 7887 x^{4} - 38142 x^{3} + 23322 x^{2} - 14520 x + 100948$$3$$6$$12$$S_3 \times C_3$$[\ ]_{3}^{6}$