Normalized defining polynomial
\( x^{18} + 90x^{12} + 108x^{6} + 216 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-3867909299433950829814480896\)
\(\medspace = -\,2^{33}\cdot 3^{37}\)
|
| |
| Root discriminant: | \(34.09\) |
| |
| Galois root discriminant: | $2^{11/6}3^{37/18}\approx 34.0908297010423$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-6}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6}a^{6}$, $\frac{1}{6}a^{7}$, $\frac{1}{12}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{36}a^{10}+\frac{1}{6}a^{4}$, $\frac{1}{36}a^{11}+\frac{1}{6}a^{5}$, $\frac{1}{360}a^{12}+\frac{1}{30}a^{6}-\frac{3}{10}$, $\frac{1}{1080}a^{13}+\frac{1}{36}a^{9}+\frac{1}{90}a^{7}+\frac{1}{3}a^{5}+\frac{1}{6}a^{3}+\frac{7}{30}a$, $\frac{1}{1080}a^{14}+\frac{1}{90}a^{8}+\frac{7}{30}a^{2}$, $\frac{1}{1080}a^{15}+\frac{1}{90}a^{9}+\frac{7}{30}a^{3}$, $\frac{1}{2160}a^{16}+\frac{1}{180}a^{10}-\frac{23}{60}a^{4}$, $\frac{1}{2160}a^{17}+\frac{1}{180}a^{11}-\frac{23}{60}a^{5}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{13}{2160}a^{16}+\frac{49}{90}a^{10}+\frac{17}{20}a^{4}$, $\frac{1}{432}a^{16}+\frac{1}{120}a^{12}+\frac{7}{36}a^{10}+\frac{23}{30}a^{6}-\frac{11}{12}a^{4}+\frac{11}{10}$, $\frac{1}{432}a^{16}-\frac{1}{90}a^{12}+\frac{7}{36}a^{10}-\frac{29}{30}a^{6}-\frac{11}{12}a^{4}+\frac{1}{5}$, $\frac{31}{2160}a^{16}-\frac{1}{90}a^{13}+\frac{77}{60}a^{10}-\frac{29}{30}a^{7}+\frac{47}{60}a^{4}+\frac{6}{5}a$, $\frac{13}{2160}a^{17}-\frac{1}{135}a^{16}+\frac{1}{135}a^{15}-\frac{1}{1080}a^{14}-\frac{1}{360}a^{12}+\frac{49}{90}a^{11}-\frac{121}{180}a^{10}+\frac{121}{180}a^{9}-\frac{17}{180}a^{8}-\frac{1}{5}a^{6}+\frac{17}{20}a^{5}-\frac{41}{30}a^{4}+\frac{41}{30}a^{3}-\frac{11}{15}a^{2}+\frac{13}{10}$, $\frac{13}{2160}a^{17}-\frac{1}{1080}a^{16}-\frac{1}{180}a^{15}-\frac{1}{72}a^{14}-\frac{1}{120}a^{13}+\frac{1}{360}a^{12}+\frac{49}{90}a^{11}-\frac{1}{15}a^{10}-\frac{29}{60}a^{9}-\frac{5}{4}a^{8}-\frac{23}{30}a^{7}+\frac{1}{5}a^{6}+\frac{17}{20}a^{5}+\frac{43}{30}a^{4}+\frac{11}{10}a^{3}-a^{2}-\frac{11}{10}a-\frac{13}{10}$, $\frac{1}{108}a^{17}-\frac{11}{540}a^{16}-\frac{11}{1080}a^{15}+\frac{5}{216}a^{14}+\frac{7}{180}a^{13}+\frac{1}{360}a^{12}+\frac{29}{36}a^{11}-\frac{329}{180}a^{10}-\frac{157}{180}a^{9}+\frac{19}{9}a^{8}+\frac{52}{15}a^{7}+\frac{1}{5}a^{6}-\frac{3}{2}a^{5}-\frac{49}{30}a^{4}+\frac{44}{15}a^{3}+\frac{29}{6}a^{2}+\frac{4}{5}a-\frac{43}{10}$, $\frac{19}{432}a^{17}+\frac{13}{240}a^{16}+\frac{1}{30}a^{15}-\frac{1}{40}a^{14}-\frac{5}{72}a^{13}-\frac{1}{15}a^{12}+\frac{47}{12}a^{11}+\frac{877}{180}a^{10}+\frac{46}{15}a^{9}-\frac{32}{15}a^{8}-\frac{37}{6}a^{7}-\frac{179}{30}a^{6}+\frac{11}{12}a^{5}+\frac{329}{60}a^{4}+\frac{47}{5}a^{3}+\frac{77}{10}a^{2}+\frac{1}{2}a-\frac{29}{5}$
|
| |
| Regulator: | \( 3129330.11622241 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 3129330.11622241 \cdot 4}{2\cdot\sqrt{3867909299433950829814480896}}\cr\approx \mathstrut & 1.53589685054807 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.1.243.1, 3.1.972.2, 3.1.972.1, 3.1.108.1, 6.0.90699264.1, 6.0.362797056.5, 6.0.362797056.3, 6.0.4478976.2, 9.1.24794911296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.1289303099811316943271493632.4 |
| Minimal sibling: | 18.2.1289303099811316943271493632.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{8}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.11a1.6 | $x^{6} + 4 x^{3} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ |
| 2.2.6.22a1.9 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 145 x^{6} + 138 x^{5} + 114 x^{4} + 78 x^{3} + 45 x^{2} + 18 x + 7$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.18.37c4.77 | $x^{18} + 9 x^{8} + 3 x^{6} + 18 x^{4} + 9 x^{2} + 6$ | $18$ | $1$ | $37$ | not computed | not computed |