Normalized defining polynomial
\( x^{18} - 15x^{15} + 39x^{12} + 475x^{9} + 834x^{6} - 300x^{3} + 1000 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-3602271247127978904000000000\)
\(\medspace = -\,2^{12}\cdot 3^{37}\cdot 5^{9}\)
|
| |
| Root discriminant: | \(33.96\) |
| |
| Galois root discriminant: | $2^{2/3}3^{37/18}5^{1/2}\approx 33.956342994275154$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-15}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-15}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{2}$, $\frac{1}{132}a^{12}+\frac{17}{132}a^{9}+\frac{13}{44}a^{6}-\frac{1}{132}a^{3}+\frac{23}{66}$, $\frac{1}{264}a^{13}-\frac{9}{88}a^{10}+\frac{13}{88}a^{7}+\frac{131}{264}a^{4}+\frac{15}{44}a$, $\frac{1}{3960}a^{14}-\frac{1}{792}a^{13}+\frac{1}{396}a^{12}-\frac{23}{792}a^{11}+\frac{115}{792}a^{10}+\frac{17}{396}a^{9}+\frac{151}{440}a^{8}+\frac{25}{88}a^{7}+\frac{19}{44}a^{6}-\frac{185}{792}a^{5}+\frac{133}{792}a^{4}-\frac{133}{396}a^{3}-\frac{43}{1980}a^{2}+\frac{43}{396}a+\frac{89}{198}$, $\frac{1}{4007520}a^{15}+\frac{2027}{801504}a^{12}-\frac{475151}{4007520}a^{9}-\frac{395699}{801504}a^{6}+\frac{131533}{500940}a^{3}-\frac{20579}{200376}$, $\frac{1}{20037600}a^{16}+\frac{2027}{4007520}a^{13}+\frac{860689}{20037600}a^{10}+\frac{81161}{801504}a^{7}+\frac{632473}{2504700}a^{4}+\frac{22601}{200376}a$, $\frac{1}{40075200}a^{17}+\frac{1}{2671680}a^{14}+\frac{1}{792}a^{13}-\frac{1}{396}a^{12}+\frac{2024489}{40075200}a^{11}-\frac{115}{792}a^{10}-\frac{17}{396}a^{9}-\frac{2344811}{8015040}a^{8}-\frac{25}{88}a^{7}-\frac{19}{44}a^{6}-\frac{117017}{834900}a^{5}-\frac{133}{792}a^{4}+\frac{133}{396}a^{3}+\frac{156521}{2003760}a^{2}-\frac{43}{396}a-\frac{89}{198}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1093}{1252350}a^{16}-\frac{14461}{1001880}a^{13}+\frac{284683}{5009400}a^{10}+\frac{63353}{200376}a^{7}+\frac{1667873}{5009400}a^{4}-\frac{53093}{100188}a$, $\frac{389}{404800}a^{17}+\frac{27}{89056}a^{15}-\frac{3307}{242880}a^{14}-\frac{809}{267168}a^{12}+\frac{10821}{404800}a^{11}-\frac{965}{89056}a^{9}+\frac{37297}{80960}a^{8}+\frac{18283}{89056}a^{6}+\frac{204241}{151800}a^{5}+\frac{36775}{33396}a^{3}+\frac{6313}{20240}a^{2}+\frac{8883}{22264}$, $\frac{7499}{20037600}a^{16}-\frac{103}{2003760}a^{15}-\frac{25067}{4007520}a^{13}+\frac{703}{400752}a^{12}+\frac{453911}{20037600}a^{10}-\frac{45307}{2003760}a^{9}+\frac{148183}{801504}a^{7}+\frac{35129}{400752}a^{6}-\frac{474521}{5009400}a^{4}+\frac{194047}{500940}a^{3}-\frac{86327}{200376}a-\frac{46549}{100188}$, $\frac{389}{404800}a^{17}-\frac{39}{22264}a^{15}-\frac{3307}{242880}a^{14}+\frac{1787}{66792}a^{12}+\frac{10821}{404800}a^{11}-\frac{5095}{66792}a^{9}+\frac{37297}{80960}a^{8}-\frac{18369}{22264}a^{6}+\frac{204241}{151800}a^{5}-\frac{34675}{33396}a^{3}+\frac{6313}{20240}a^{2}+\frac{4409}{8349}$, $\frac{871}{404800}a^{17}-\frac{44059}{20037600}a^{16}-\frac{1}{125235}a^{15}-\frac{6881}{242880}a^{14}+\frac{132967}{4007520}a^{13}-\frac{259}{50094}a^{12}+\frac{26557}{1214400}a^{11}-\frac{1760251}{20037600}a^{10}+\frac{20527}{250470}a^{9}+\frac{99059}{80960}a^{8}-\frac{836771}{801504}a^{7}-\frac{12383}{50094}a^{6}+\frac{263437}{75900}a^{5}-\frac{4642057}{2504700}a^{4}-\frac{620683}{250470}a^{3}+\frac{10343}{5520}a^{2}+\frac{419149}{200376}a-\frac{80869}{25047}$, $\frac{81809}{20037600}a^{16}+\frac{119}{2003760}a^{15}-\frac{227177}{4007520}a^{13}+\frac{1369}{400752}a^{12}+\frac{1877501}{20037600}a^{10}-\frac{118909}{2003760}a^{9}+\frac{1653229}{801504}a^{7}+\frac{63935}{400752}a^{6}+\frac{29515939}{5009400}a^{4}+\frac{1047319}{500940}a^{3}+\frac{589207}{200376}a+\frac{570401}{100188}$, $\frac{1}{12650}a^{16}+\frac{59}{30360}a^{13}-\frac{7357}{151800}a^{10}+\frac{459}{2024}a^{7}+\frac{194633}{151800}a^{4}+\frac{4247}{3036}a+2$, $\frac{135739}{6679200}a^{17}+\frac{961}{139150}a^{16}-\frac{8}{605}a^{15}-\frac{457031}{1335840}a^{14}-\frac{17057}{111320}a^{13}+\frac{20}{121}a^{12}+\frac{3049257}{2226400}a^{11}+\frac{608391}{556600}a^{10}+\frac{48}{605}a^{9}+\frac{10658479}{1335840}a^{8}+\frac{2765}{22264}a^{7}-\frac{1088}{121}a^{6}-\frac{85003}{834900}a^{5}-\frac{6895979}{556600}a^{4}-\frac{12352}{605}a^{3}-\frac{3556803}{111320}a^{2}-\frac{340149}{11132}a-\frac{3298}{121}$
|
| |
| Regulator: | \( 5300270.93735502 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 5300270.93735502 \cdot 4}{2\cdot\sqrt{3602271247127978904000000000}}\cr\approx \mathstrut & 2.69562003364532 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.243.1, 3.1.972.2, 3.1.108.1, 3.1.972.1, 6.0.22143375.1, 6.0.4374000.1, 6.0.354294000.5, 6.0.354294000.4, 9.1.24794911296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.1200757082375992968000000000.2 |
| Minimal sibling: | 18.2.1200757082375992968000000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.1.18.37c4.77 | $x^{18} + 9 x^{8} + 3 x^{6} + 18 x^{4} + 9 x^{2} + 6$ | $18$ | $1$ | $37$ | not computed | not computed |
|
\(5\)
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |