Normalized defining polynomial
\( x^{18} + 15x^{16} + 87x^{14} + 277x^{12} + 576x^{10} + 831x^{8} + 851x^{6} + 633x^{4} + 321x^{2} + 107 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-351335026748107688667512832\)
\(\medspace = -\,2^{18}\cdot 3^{6}\cdot 107^{9}\)
|
| |
| Root discriminant: | \(29.84\) |
| |
| Galois root discriminant: | $2^{63/32}3^{1/2}107^{3/4}\approx 225.5543797844839$ | ||
| Ramified primes: |
\(2\), \(3\), \(107\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-107}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{4}+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{5}+\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{10}-\frac{1}{9}a^{8}-\frac{1}{9}a^{6}-\frac{4}{9}a^{4}+\frac{2}{9}a^{2}+\frac{4}{9}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{11}-\frac{1}{9}a^{9}-\frac{1}{9}a^{7}-\frac{4}{9}a^{5}+\frac{2}{9}a^{3}+\frac{4}{9}a$, $\frac{1}{9}a^{14}+\frac{1}{9}a^{10}+\frac{1}{9}a^{8}+\frac{1}{9}a^{6}+\frac{4}{9}a^{4}-\frac{1}{3}a^{2}+\frac{4}{9}$, $\frac{1}{9}a^{15}+\frac{1}{9}a^{11}+\frac{1}{9}a^{9}+\frac{1}{9}a^{7}+\frac{4}{9}a^{5}-\frac{1}{3}a^{3}+\frac{4}{9}a$, $\frac{1}{3681}a^{16}+\frac{88}{3681}a^{14}-\frac{11}{1227}a^{12}-\frac{29}{1227}a^{10}+\frac{40}{409}a^{8}+\frac{13}{409}a^{6}-\frac{1651}{3681}a^{4}+\frac{1583}{3681}a^{2}-\frac{167}{409}$, $\frac{1}{3681}a^{17}+\frac{88}{3681}a^{15}-\frac{11}{1227}a^{13}-\frac{29}{1227}a^{11}+\frac{40}{409}a^{9}+\frac{13}{409}a^{7}-\frac{1651}{3681}a^{5}+\frac{1583}{3681}a^{3}-\frac{167}{409}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{43}{3681}a^{16}+\frac{512}{3681}a^{14}+\frac{1853}{3681}a^{12}+\frac{1985}{3681}a^{10}-\frac{2107}{3681}a^{8}-\frac{7648}{3681}a^{6}-\frac{5144}{3681}a^{4}+\frac{1558}{1227}a^{2}+\frac{590}{409}$, $\frac{146}{3681}a^{16}+\frac{1805}{3681}a^{14}+\frac{828}{409}a^{12}+\frac{1588}{409}a^{10}+\frac{1750}{409}a^{8}+\frac{671}{409}a^{6}-\frac{6689}{3681}a^{4}-\frac{9374}{3681}a^{2}-\frac{1069}{409}$, $\frac{89}{3681}a^{16}+\frac{1288}{3681}a^{14}+\frac{2293}{1227}a^{12}+\frac{18842}{3681}a^{10}+\frac{32858}{3681}a^{8}+\frac{40679}{3681}a^{6}+\frac{3669}{409}a^{4}+\frac{20641}{3681}a^{2}+\frac{3248}{3681}$, $\frac{110}{3681}a^{16}+\frac{500}{1227}a^{14}+\frac{2471}{1227}a^{12}+\frac{19060}{3681}a^{10}+\frac{32647}{3681}a^{8}+\frac{40273}{3681}a^{6}+\frac{35978}{3681}a^{4}+\frac{23209}{3681}a^{2}+\frac{6859}{3681}$, $\frac{146}{3681}a^{16}+\frac{1805}{3681}a^{14}+\frac{828}{409}a^{12}+\frac{1588}{409}a^{10}+\frac{1750}{409}a^{8}+\frac{671}{409}a^{6}-\frac{6689}{3681}a^{4}-\frac{9374}{3681}a^{2}-\frac{660}{409}$, $\frac{10}{409}a^{17}-\frac{236}{3681}a^{16}+\frac{967}{3681}a^{15}-\frac{3590}{3681}a^{14}+\frac{2347}{3681}a^{13}-\frac{20842}{3681}a^{12}-\frac{461}{409}a^{11}-\frac{63722}{3681}a^{10}-\frac{9241}{1227}a^{9}-\frac{120134}{3681}a^{8}-\frac{6601}{409}a^{7}-\frac{149903}{3681}a^{6}-\frac{24172}{1227}a^{5}-\frac{41356}{1227}a^{4}-\frac{49351}{3681}a^{3}-\frac{7381}{409}a^{2}-\frac{20341}{3681}a-\frac{17482}{3681}$, $\frac{2131}{1227}a^{17}-\frac{10861}{3681}a^{16}+\frac{34562}{1227}a^{15}-\frac{152083}{3681}a^{14}+\frac{215977}{1227}a^{13}-\frac{771245}{3681}a^{12}+\frac{232681}{409}a^{11}-\frac{1945087}{3681}a^{10}+\frac{1337306}{1227}a^{9}-\frac{2934904}{3681}a^{8}+\frac{1675919}{1227}a^{7}-\frac{2991400}{3681}a^{6}+\frac{478100}{409}a^{5}-\frac{241068}{409}a^{4}+\frac{813851}{1227}a^{3}-\frac{399400}{1227}a^{2}+\frac{282605}{1227}a-\frac{377432}{3681}$, $\frac{19829}{409}a^{17}+\frac{35311}{3681}a^{16}+\frac{2484052}{3681}a^{15}+\frac{306127}{3681}a^{14}+\frac{12666299}{3681}a^{13}+\frac{5855}{1227}a^{12}+\frac{33396428}{3681}a^{11}-\frac{1772080}{1227}a^{10}+\frac{55481090}{3681}a^{9}-\frac{5927557}{1227}a^{8}+\frac{61361939}{3681}a^{7}-\frac{10362398}{1227}a^{6}+\frac{45027209}{3681}a^{5}-\frac{33018580}{3681}a^{4}+\frac{24953191}{3681}a^{3}-\frac{20618407}{3681}a^{2}+\frac{2118695}{1227}a-\frac{3907511}{1227}$
|
| |
| Regulator: | \( 776442.124776 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 776442.124776 \cdot 1}{2\cdot\sqrt{351335026748107688667512832}}\cr\approx \mathstrut & 0.316109235346 \end{aligned}\]
Galois group
$C_2^4.S_4^2$ (as 18T546):
| A solvable group of order 9216 |
| The 60 conjugacy class representatives for $C_2^4.S_4^2$ |
| Character table for $C_2^4.S_4^2$ |
Intermediate fields
| 3.1.107.1, 3.3.321.1, 9.3.3539149227.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.6.37592847862047522687423873024.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a1.2 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(3\)
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 3.6.2.6a1.2 | $x^{12} + 4 x^{10} + 6 x^{8} + 4 x^{7} + 8 x^{6} + 8 x^{5} + 9 x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(107\)
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 107.1.4.3a1.2 | $x^{4} + 214$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 107.4.2.4a1.2 | $x^{8} + 26 x^{6} + 158 x^{5} + 173 x^{4} + 2054 x^{3} + 6293 x^{2} + 316 x + 111$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |