Properties

Label 18.0.333...896.1
Degree $18$
Signature $[0, 9]$
Discriminant $-3.340\times 10^{29}$
Root discriminant \(43.67\)
Ramified primes $2,19,137$
Class number $128$ (GRH)
Class group [2, 64] (GRH)
Galois group $S_4^2:C_2^2$ (as 18T370)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1)
 
gp: K = bnfinit(y^18 + 24*y^16 + 228*y^14 + 1129*y^12 + 3177*y^10 + 5133*y^8 + 4523*y^6 + 1874*y^4 + 231*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1)
 

\( x^{18} + 24x^{16} + 228x^{14} + 1129x^{12} + 3177x^{10} + 5133x^{8} + 4523x^{6} + 1874x^{4} + 231x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-333998778547472552821465808896\) \(\medspace = -\,2^{30}\cdot 19^{6}\cdot 137^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(43.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(19\), \(137\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{256}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{64549}a^{16}-\frac{4681}{64549}a^{14}+\frac{772}{3797}a^{12}+\frac{26102}{64549}a^{10}+\frac{30014}{64549}a^{8}+\frac{22475}{64549}a^{6}-\frac{9090}{64549}a^{4}-\frac{25663}{64549}a^{2}-\frac{26533}{64549}$, $\frac{1}{64549}a^{17}-\frac{4681}{64549}a^{15}+\frac{772}{3797}a^{13}+\frac{26102}{64549}a^{11}+\frac{30014}{64549}a^{9}+\frac{22475}{64549}a^{7}-\frac{9090}{64549}a^{5}-\frac{25663}{64549}a^{3}-\frac{26533}{64549}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{64}$, which has order $128$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{812}{64549}a^{16}+\frac{7419}{64549}a^{14}-\frac{3438}{3797}a^{12}-\frac{880934}{64549}a^{10}-\frac{3707447}{64549}a^{8}-\frac{6795312}{64549}a^{6}-\frac{5315512}{64549}a^{4}-\frac{1344558}{64549}a^{2}-\frac{49979}{64549}$, $\frac{1867}{64549}a^{16}+\frac{39237}{64549}a^{14}+\frac{17449}{3797}a^{12}+\frac{966174}{64549}a^{10}+\frac{975841}{64549}a^{8}-\frac{1545201}{64549}a^{6}-\frac{3932132}{64549}a^{4}-\frac{2276678}{64549}a^{2}-\frac{92577}{64549}$, $\frac{8535}{64549}a^{16}+\frac{197143}{64549}a^{14}+\frac{103744}{3797}a^{12}+\frac{7961498}{64549}a^{10}+\frac{19403758}{64549}a^{8}+\frac{24900411}{64549}a^{6}+\frac{14851018}{64549}a^{4}+\frac{3014855}{64549}a^{2}+\frac{172384}{64549}$, $\frac{11736}{64549}a^{17}+\frac{253179}{64549}a^{15}+\frac{122054}{3797}a^{13}+\frac{8503986}{64549}a^{11}+\frac{18977817}{64549}a^{9}+\frac{23450673}{64549}a^{7}+\frac{15769213}{64549}a^{5}+\frac{5491331}{64549}a^{3}+\frac{896774}{64549}a$, $\frac{9347}{64549}a^{16}+\frac{204562}{64549}a^{14}+\frac{100306}{3797}a^{12}+\frac{7080564}{64549}a^{10}+\frac{15696311}{64549}a^{8}+\frac{18105099}{64549}a^{6}+\frac{9535506}{64549}a^{4}+\frac{1670297}{64549}a^{2}+\frac{122405}{64549}$, $a$, $\frac{19062}{64549}a^{17}+\frac{429339}{64549}a^{15}+\frac{218918}{3797}a^{13}+\frac{16214431}{64549}a^{11}+\frac{37983893}{64549}a^{9}+\frac{46352919}{64549}a^{7}+\frac{25085497}{64549}a^{5}+\frac{3191666}{64549}a^{3}-\frac{482474}{64549}a$, $\frac{19298}{64549}a^{17}+\frac{421956}{64549}a^{15}+\frac{207463}{3797}a^{13}+\frac{14822270}{64549}a^{11}+\frac{33900220}{64549}a^{9}+\frac{41974669}{64549}a^{7}+\frac{25974060}{64549}a^{5}+\frac{6688450}{64549}a^{3}+\frac{549775}{64549}a$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 138588.252508 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 138588.252508 \cdot 128}{2\cdot\sqrt{333998778547472552821465808896}}\cr\approx \mathstrut & 0.234235528349 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 24*x^16 + 228*x^14 + 1129*x^12 + 3177*x^10 + 5133*x^8 + 4523*x^6 + 1874*x^4 + 231*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4^2:C_2^2$ (as 18T370):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 2304
The 40 conjugacy class representatives for $S_4^2:C_2^2$
Character table for $S_4^2:C_2^2$

Intermediate fields

9.9.1128762254528.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.0.743026229623638114304.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{3}$ ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ R ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.6.4$x^{6} - 4 x^{5} + 14 x^{4} - 24 x^{3} + 100 x^{2} + 48 x + 88$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
2.12.24.259$x^{12} - 8 x^{11} + 26 x^{10} + 12 x^{9} + 254 x^{8} + 208 x^{7} + 352 x^{6} + 768 x^{5} + 372 x^{4} + 896 x^{3} + 776 x^{2} - 80 x + 536$$4$$3$$24$$C_2^2 \times A_4$$[2, 2, 2, 3]^{3}$
\(19\) Copy content Toggle raw display $\Q_{19}$$x + 17$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 17$$1$$1$$0$Trivial$[\ ]$
19.2.1.2$x^{2} + 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} + 2 x^{2} + 11 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
19.8.4.1$x^{8} + 80 x^{6} + 22 x^{5} + 2250 x^{4} - 792 x^{3} + 25817 x^{2} - 22946 x + 107924$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(137\) Copy content Toggle raw display $\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
137.2.0.1$x^{2} + 131 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
137.2.0.1$x^{2} + 131 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
137.4.2.1$x^{4} + 20538 x^{3} + 106780719 x^{2} + 13640908302 x + 496637065$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
137.8.4.1$x^{8} + 40552 x^{7} + 616674814 x^{6} + 4167912520178 x^{5} + 10563701578684025 x^{4} + 575230492397974 x^{3} + 10971113842265417 x^{2} + 1003833647367390048 x + 45253593243784800$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$