Normalized defining polynomial
\( x^{18} + x^{16} - 6 x^{15} - 4 x^{14} - 5 x^{13} - 6 x^{12} + 16 x^{11} + 22 x^{10} + 43 x^{9} + \cdots + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-17436035582546112000000\)
\(\medspace = -\,2^{12}\cdot 3^{9}\cdot 5^{6}\cdot 7^{12}\)
|
| |
| Root discriminant: | \(17.20\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}5^{1/2}7^{2/3}\approx 28.344860147201352$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 6.0.64827.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2938}a^{15}+\frac{111}{1469}a^{13}-\frac{5}{2938}a^{12}+\frac{581}{2938}a^{11}-\frac{444}{1469}a^{10}-\frac{441}{1469}a^{9}+\frac{1195}{2938}a^{8}-\frac{411}{2938}a^{7}-\frac{582}{1469}a^{6}-\frac{1455}{2938}a^{5}+\frac{855}{2938}a^{4}-\frac{887}{2938}a^{3}-\frac{581}{2938}a^{2}+\frac{111}{1469}a-\frac{1}{2938}$, $\frac{1}{208598}a^{16}+\frac{29}{208598}a^{15}-\frac{27689}{208598}a^{14}+\frac{9827}{104299}a^{13}-\frac{21599}{208598}a^{12}+\frac{77659}{208598}a^{11}-\frac{10475}{208598}a^{10}-\frac{49651}{104299}a^{9}-\frac{61241}{208598}a^{8}+\frac{57429}{208598}a^{7}+\frac{36013}{104299}a^{6}+\frac{1453}{16046}a^{5}-\frac{14488}{104299}a^{4}-\frac{68905}{208598}a^{3}+\frac{4597}{16046}a^{2}-\frac{454}{104299}a-\frac{24253}{104299}$, $\frac{1}{208598}a^{17}+\frac{6}{104299}a^{15}-\frac{11757}{208598}a^{14}+\frac{4157}{104299}a^{13}+\frac{39825}{208598}a^{12}-\frac{36473}{104299}a^{11}+\frac{99535}{208598}a^{10}+\frac{34379}{104299}a^{9}-\frac{42047}{208598}a^{8}+\frac{26095}{208598}a^{7}-\frac{39691}{208598}a^{6}-\frac{36435}{104299}a^{5}+\frac{19375}{104299}a^{4}-\frac{1}{2938}a^{3}-\frac{32277}{104299}a^{2}-\frac{48089}{208598}a+\frac{22245}{208598}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -\frac{14}{113} a^{17} - \frac{305}{1469} a^{16} - \frac{19}{113} a^{15} + \frac{774}{1469} a^{14} + \frac{2513}{1469} a^{13} + \frac{2507}{1469} a^{12} + \frac{2975}{1469} a^{11} - \frac{805}{1469} a^{10} - \frac{8509}{1469} a^{9} - \frac{15565}{1469} a^{8} - \frac{22435}{1469} a^{7} - \frac{9210}{1469} a^{6} - \frac{14568}{1469} a^{5} - \frac{25462}{1469} a^{4} + \frac{5644}{1469} a^{3} - \frac{6389}{1469} a^{2} - \frac{1671}{1469} a + \frac{75}{113} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{590}{8023}a^{17}+\frac{248}{8023}a^{16}-\frac{3111}{104299}a^{15}-\frac{3942}{8023}a^{14}-\frac{63340}{104299}a^{13}+\frac{7079}{104299}a^{12}+\frac{33374}{104299}a^{11}+\frac{209186}{104299}a^{10}+\frac{324745}{104299}a^{9}+\frac{258912}{104299}a^{8}+\frac{59000}{104299}a^{7}-\frac{841917}{104299}a^{6}-\frac{20622}{104299}a^{5}+\frac{50998}{104299}a^{4}-\frac{920323}{104299}a^{3}-\frac{98}{1469}a^{2}+\frac{178}{104299}a-\frac{73108}{104299}$, $\frac{1218}{8023}a^{17}-\frac{248}{8023}a^{16}+\frac{4354}{104299}a^{15}-\frac{110}{113}a^{14}-\frac{52937}{104299}a^{13}+\frac{4334}{104299}a^{12}-\frac{8966}{104299}a^{11}+\frac{332310}{104299}a^{10}+\frac{340260}{104299}a^{9}+\frac{399426}{104299}a^{8}+\frac{160220}{104299}a^{7}-\frac{1202818}{104299}a^{6}+\frac{1574598}{104299}a^{5}-\frac{627637}{104299}a^{4}-\frac{531840}{104299}a^{3}+\frac{408560}{104299}a^{2}-\frac{67978}{104299}a-\frac{67690}{104299}$, $\frac{3515}{16046}a^{17}+\frac{9047}{104299}a^{16}+\frac{37105}{208598}a^{15}-\frac{3623}{2938}a^{14}-\frac{11761}{8023}a^{13}-\frac{253273}{208598}a^{12}-\frac{330919}{208598}a^{11}+\frac{703947}{208598}a^{10}+\frac{698234}{104299}a^{9}+\frac{175573}{16046}a^{8}+\frac{1242288}{104299}a^{7}-\frac{11509}{1846}a^{6}+\frac{4315333}{208598}a^{5}-\frac{63695}{104299}a^{4}-\frac{764584}{104299}a^{3}+\frac{688394}{104299}a^{2}-\frac{322577}{208598}a-\frac{219885}{208598}$, $\frac{97925}{208598}a^{17}+\frac{1913}{16046}a^{16}+\frac{81115}{208598}a^{15}-\frac{589101}{208598}a^{14}-\frac{282541}{104299}a^{13}-\frac{506043}{208598}a^{12}-\frac{483123}{208598}a^{11}+\frac{1663761}{208598}a^{10}+\frac{1383683}{104299}a^{9}+\frac{4583205}{208598}a^{8}+\frac{2112814}{104299}a^{7}-\frac{1911387}{104299}a^{6}+\frac{9128143}{208598}a^{5}-\frac{85385}{8023}a^{4}-\frac{170697}{104299}a^{3}+\frac{677}{226}a^{2}+\frac{180699}{208598}a+\frac{10667}{104299}$, $\frac{670}{8023}a^{17}+\frac{592}{8023}a^{16}+\frac{11935}{208598}a^{15}-\frac{99}{226}a^{14}-\frac{164137}{208598}a^{13}-\frac{112247}{208598}a^{12}-\frac{138311}{208598}a^{11}+\frac{206579}{208598}a^{10}+\frac{613927}{208598}a^{9}+\frac{946711}{208598}a^{8}+\frac{1165429}{208598}a^{7}-\frac{166173}{208598}a^{6}+\frac{753591}{104299}a^{5}+\frac{726900}{104299}a^{4}-\frac{271916}{104299}a^{3}+\frac{258481}{104299}a^{2}-\frac{46357}{208598}a-\frac{81615}{208598}$, $\frac{19207}{104299}a^{17}+\frac{52761}{208598}a^{16}+\frac{1554}{104299}a^{15}-\frac{105281}{104299}a^{14}-\frac{259085}{104299}a^{13}-\frac{211505}{208598}a^{12}-\frac{77174}{104299}a^{11}+\frac{347773}{104299}a^{10}+\frac{1024825}{104299}a^{9}+\frac{2365221}{208598}a^{8}+\frac{1240245}{104299}a^{7}-\frac{1714613}{208598}a^{6}-\frac{56753}{104299}a^{5}+\frac{4356945}{208598}a^{4}-\frac{2320704}{104299}a^{3}+\frac{5158}{1469}a^{2}+\frac{98362}{104299}a-\frac{18266}{104299}$, $\frac{963}{208598}a^{17}-\frac{50355}{208598}a^{16}-\frac{2264}{104299}a^{15}-\frac{23568}{104299}a^{14}+\frac{304013}{208598}a^{13}+\frac{3459}{2938}a^{12}+\frac{111862}{104299}a^{11}+\frac{119870}{104299}a^{10}-\frac{895465}{208598}a^{9}-\frac{11471}{1846}a^{8}-\frac{2140887}{208598}a^{7}-\frac{144039}{16046}a^{6}+\frac{2454527}{208598}a^{5}-\frac{4976831}{208598}a^{4}+\frac{999605}{104299}a^{3}+\frac{34729}{104299}a^{2}-\frac{241676}{104299}a+\frac{103281}{104299}$, $\frac{428939}{208598}a^{17}+\frac{120515}{208598}a^{16}+\frac{218615}{104299}a^{15}-\frac{1235690}{104299}a^{14}-\frac{2446189}{208598}a^{13}-\frac{2701499}{208598}a^{12}-\frac{119737}{8023}a^{11}+\frac{3129902}{104299}a^{10}+\frac{11510625}{208598}a^{9}+\frac{1647963}{16046}a^{8}+\frac{22771833}{208598}a^{7}-\frac{9925031}{208598}a^{6}+\frac{46936873}{208598}a^{5}-\frac{8259605}{208598}a^{4}+\frac{1109027}{104299}a^{3}+\frac{3143518}{104299}a^{2}-\frac{247888}{104299}a-\frac{536918}{104299}$
|
| |
| Regulator: | \( 13584.372345087919 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 13584.372345087919 \cdot 1}{6\cdot\sqrt{17436035582546112000000}}\cr\approx \mathstrut & 0.261687674911187 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.980.1, \(\Q(\zeta_{7})^+\), 6.0.25930800.1, 6.0.64827.1, 9.3.941192000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | 12.0.112021056000000.2 |
| Degree 18 sibling: | 18.6.139488284660368896000000000.1 |
| Minimal sibling: | 12.0.112021056000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.6.1.0a1.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |
| 2.6.2.12a1.1 | $x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 5 x^{6} + 2 x^{5} + 6 x^{4} + 4 x^{3} + x^{2} + 4 x + 5$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $$[2]^{6}$$ | |
|
\(3\)
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(5\)
| 5.6.1.0a1.1 | $x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |
| 5.6.2.6a1.2 | $x^{12} + 2 x^{10} + 8 x^{9} + 3 x^{8} + 8 x^{7} + 22 x^{6} + 8 x^{5} + 5 x^{4} + 16 x^{3} + 4 x^{2} + 9$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(7\)
| 7.3.3.6a1.3 | $x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ |
| 7.3.3.6a1.3 | $x^{9} + 18 x^{8} + 108 x^{7} + 228 x^{6} + 144 x^{5} + 432 x^{4} + 48 x^{3} + 288 x^{2} + 71$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ |