Properties

Label 18.0.16528519607...6256.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 3^{24}\cdot 7^{12}\cdot 127^{2}$
Root discriminant $54.24$
Ramified primes $2, 3, 7, 127$
Class number $2016$ (GRH)
Class group $[2, 2, 2, 252]$ (GRH)
Galois group 18T263

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16129, 0, 272034, 0, 820710, 0, 836429, 0, 406209, 0, 106527, 0, 15789, 0, 1314, 0, 57, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 57*x^16 + 1314*x^14 + 15789*x^12 + 106527*x^10 + 406209*x^8 + 836429*x^6 + 820710*x^4 + 272034*x^2 + 16129)
 
gp: K = bnfinit(x^18 + 57*x^16 + 1314*x^14 + 15789*x^12 + 106527*x^10 + 406209*x^8 + 836429*x^6 + 820710*x^4 + 272034*x^2 + 16129, 1)
 

Normalized defining polynomial

\( x^{18} + 57 x^{16} + 1314 x^{14} + 15789 x^{12} + 106527 x^{10} + 406209 x^{8} + 836429 x^{6} + 820710 x^{4} + 272034 x^{2} + 16129 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-16528519607100378938441688416256=-\,2^{18}\cdot 3^{24}\cdot 7^{12}\cdot 127^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $54.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 127$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{116} a^{14} - \frac{7}{58} a^{12} + \frac{10}{29} a^{10} + \frac{3}{29} a^{8} - \frac{19}{58} a^{6} - \frac{9}{29} a^{4} + \frac{10}{29} a^{2} + \frac{25}{116}$, $\frac{1}{116} a^{15} - \frac{7}{58} a^{13} + \frac{10}{29} a^{11} + \frac{3}{29} a^{9} - \frac{19}{58} a^{7} - \frac{9}{29} a^{5} + \frac{10}{29} a^{3} + \frac{25}{116} a$, $\frac{1}{132686918689889428} a^{16} - \frac{20678050345309}{132686918689889428} a^{14} - \frac{6136671543994399}{132686918689889428} a^{12} + \frac{38491139197484623}{132686918689889428} a^{10} - \frac{42269600467312385}{132686918689889428} a^{8} + \frac{27141461589986097}{132686918689889428} a^{6} - \frac{61713395414098709}{132686918689889428} a^{4} + \frac{10164310593115289}{66343459344944714} a^{2} - \frac{67825300453703}{261194721830491}$, $\frac{1}{132686918689889428} a^{17} - \frac{20678050345309}{132686918689889428} a^{15} - \frac{6136671543994399}{132686918689889428} a^{13} + \frac{38491139197484623}{132686918689889428} a^{11} - \frac{42269600467312385}{132686918689889428} a^{9} + \frac{27141461589986097}{132686918689889428} a^{7} - \frac{61713395414098709}{132686918689889428} a^{5} + \frac{10164310593115289}{66343459344944714} a^{3} - \frac{67825300453703}{261194721830491} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{252}$, which has order $2016$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 54408.4888887 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T263:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1152
The 48 conjugacy class representatives for t18n263
Character table for t18n263 is not computed

Intermediate fields

3.3.3969.1, \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.4$x^{6} + x^{2} + 1$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
2.6.6.4$x^{6} + x^{2} + 1$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
2.6.6.4$x^{6} + x^{2} + 1$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
3Data not computed
7Data not computed
$127$$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 9$$1$$1$$0$Trivial$[\ ]$
127.2.1.2$x^{2} + 1143$$2$$1$$1$$C_2$$[\ ]_{2}$
127.2.1.2$x^{2} + 1143$$2$$1$$1$$C_2$$[\ ]_{2}$
127.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
127.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
127.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$