Normalized defining polynomial
\( x^{18} - 2 x^{17} - 13 x^{15} + 83 x^{14} - 101 x^{13} + 27 x^{12} - 399 x^{11} + 1430 x^{10} - 743 x^{9} - 2237 x^{8} + 4368 x^{7} - 3469 x^{6} + 3460 x^{5} + 1340 x^{4} - 4333 x^{3} + 6206 x^{2} - 3917 x + 13411 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15490206293606403634785167=-\,7^{12}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{96} a^{15} + \frac{5}{96} a^{14} + \frac{1}{96} a^{13} - \frac{1}{32} a^{12} + \frac{5}{96} a^{11} - \frac{7}{96} a^{10} + \frac{3}{32} a^{9} - \frac{1}{96} a^{8} + \frac{1}{48} a^{7} + \frac{11}{48} a^{6} - \frac{5}{24} a^{5} + \frac{5}{48} a^{4} - \frac{17}{96} a^{3} + \frac{15}{32} a^{2} + \frac{9}{32} a - \frac{23}{96}$, $\frac{1}{96} a^{16} + \frac{1}{24} a^{13} - \frac{1}{24} a^{12} + \frac{1}{24} a^{11} + \frac{1}{12} a^{10} + \frac{1}{48} a^{9} + \frac{7}{96} a^{8} - \frac{1}{8} a^{7} - \frac{11}{48} a^{6} + \frac{1}{48} a^{5} + \frac{17}{96} a^{4} + \frac{17}{48} a^{3} + \frac{1}{16} a^{2} - \frac{13}{48} a + \frac{43}{96}$, $\frac{1}{15878064509515129916033184} a^{17} + \frac{72259420285506360506923}{15878064509515129916033184} a^{16} + \frac{1870119569525126293871}{3969516127378782479008296} a^{15} - \frac{151195353284345199357211}{3969516127378782479008296} a^{14} + \frac{96860800643745033314467}{1984758063689391239504148} a^{13} + \frac{10162678978529486114615}{330793010614898539917358} a^{12} - \frac{29621519386699698038851}{496189515922347809876037} a^{11} - \frac{633930900455966424769259}{7939032254757564958016592} a^{10} + \frac{155157720643753442104203}{5292688169838376638677728} a^{9} + \frac{231549553225818218455853}{15878064509515129916033184} a^{8} - \frac{191294799842731384988213}{2646344084919188319338864} a^{7} + \frac{12892852283170062197814}{165396505307449269958679} a^{6} + \frac{534594085264031216746141}{5292688169838376638677728} a^{5} + \frac{853503795898381044704129}{15878064509515129916033184} a^{4} - \frac{340601947502905989173453}{1323172042459594159669432} a^{3} + \frac{1885771433115103499430211}{3969516127378782479008296} a^{2} - \frac{5791872503019477128505331}{15878064509515129916033184} a - \frac{1842360464010747254462513}{5292688169838376638677728}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29368.4164899 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 3.1.2303.1 x3, \(\Q(\zeta_{7})^+\), 6.0.249279023.1, 6.0.5087327.1 x2, 6.0.249279023.2, 9.3.12214672127.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.5087327.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $47$ | 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |