Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 26 x^{15} + 40 x^{14} - 98 x^{13} + 214 x^{12} - 180 x^{11} + 94 x^{10} + 240 x^{9} - 166 x^{8} - 346 x^{7} + 387 x^{6} + 144 x^{5} + 183 x^{4} + 45 x^{3} + 21 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105226667788517176205647=-\,7^{15}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5}$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{98745078826041104260} a^{17} - \frac{4714061555271744181}{98745078826041104260} a^{16} - \frac{127785655527003547}{4937253941302055213} a^{15} - \frac{2474074754225539561}{49372539413020552130} a^{14} - \frac{3296612258676563361}{49372539413020552130} a^{13} + \frac{1944239369822935947}{24686269706510276065} a^{12} + \frac{489210846464088147}{49372539413020552130} a^{11} + \frac{3326471407070951801}{49372539413020552130} a^{10} - \frac{3828602743051459337}{24686269706510276065} a^{9} - \frac{2275348515375749139}{24686269706510276065} a^{8} - \frac{18808514879415822777}{49372539413020552130} a^{7} + \frac{1991559125182078147}{24686269706510276065} a^{6} + \frac{31505165916110647471}{98745078826041104260} a^{5} - \frac{11378737627714114441}{98745078826041104260} a^{4} - \frac{14859142428626506911}{49372539413020552130} a^{3} - \frac{17116920831631833661}{98745078826041104260} a^{2} - \frac{484896488630393913}{24686269706510276065} a + \frac{8178400699570292551}{19749015765208220852}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1079221961855783189}{24686269706510276065} a^{17} + \frac{9559957616114906433}{49372539413020552130} a^{16} - \frac{7862821012445822079}{24686269706510276065} a^{15} - \frac{2698281314406409891}{24686269706510276065} a^{14} + \frac{1334614879615159058}{4937253941302055213} a^{13} + \frac{28353905884660856891}{24686269706510276065} a^{12} - \frac{49707137782911400077}{24686269706510276065} a^{11} - \frac{40555873751918850873}{4937253941302055213} a^{10} + \frac{278279393436072230658}{24686269706510276065} a^{9} - \frac{493227439224437268034}{24686269706510276065} a^{8} - \frac{176264853243586564903}{24686269706510276065} a^{7} + \frac{144019997988855549745}{4937253941302055213} a^{6} + \frac{96652775618478636262}{24686269706510276065} a^{5} - \frac{1774626336418581316847}{49372539413020552130} a^{4} - \frac{301758603604306121189}{24686269706510276065} a^{3} - \frac{391478876759448471347}{24686269706510276065} a^{2} - \frac{11110056191179123083}{9874507882604110426} a - \frac{3586954569388599281}{9874507882604110426} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23621.7133529 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), 3.3.2597.1, \(\Q(\zeta_{7})\), 6.0.47210863.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $53$ | 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |