Normalized defining polynomial
\( x^{16} - x^{14} + 3x^{12} - 13x^{8} - 13x^{6} + 4x^{4} + 4x^{2} - 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[6, 5]$ |
| |
| Discriminant: |
\(-6350601601600000000\)
\(\medspace = -\,2^{12}\cdot 5^{8}\cdot 251^{4}\)
|
| |
| Root discriminant: | \(14.97\) |
| |
| Galois root discriminant: | $2^{63/32}5^{1/2}251^{1/2}\approx 138.66749394298347$ | ||
| Ramified primes: |
\(2\), \(5\), \(251\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{1156}a^{14}+\frac{91}{289}a^{12}-\frac{77}{1156}a^{10}-\frac{361}{1156}a^{8}+\frac{3}{578}a^{6}-\frac{135}{1156}a^{4}+\frac{437}{1156}a^{2}-\frac{19}{1156}$, $\frac{1}{2312}a^{15}-\frac{1}{2312}a^{14}+\frac{91}{578}a^{13}-\frac{91}{578}a^{12}+\frac{1079}{2312}a^{11}-\frac{1079}{2312}a^{10}+\frac{795}{2312}a^{9}-\frac{795}{2312}a^{8}-\frac{575}{1156}a^{7}+\frac{575}{1156}a^{6}+\frac{1021}{2312}a^{5}-\frac{1021}{2312}a^{4}+\frac{437}{2312}a^{3}-\frac{437}{2312}a^{2}-\frac{19}{2312}a+\frac{19}{2312}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1315}{1156}a^{14}-\frac{270}{289}a^{12}+\frac{3941}{1156}a^{10}+\frac{401}{1156}a^{8}-\frac{8193}{578}a^{6}-\frac{20309}{1156}a^{4}-\frac{1033}{1156}a^{2}+\frac{3915}{1156}$, $a$, $\frac{231}{1156}a^{14}-\frac{76}{289}a^{12}+\frac{709}{1156}a^{10}-\frac{159}{1156}a^{8}-\frac{1619}{578}a^{6}-\frac{2285}{1156}a^{4}+\frac{2687}{1156}a^{2}+\frac{1391}{1156}$, $\frac{235}{1156}a^{14}-\frac{1}{289}a^{12}+\frac{401}{1156}a^{10}+\frac{709}{1156}a^{8}-\frac{1607}{578}a^{6}-\frac{6293}{1156}a^{4}-\frac{1345}{1156}a^{2}+\frac{2471}{1156}$, $\frac{635}{578}a^{15}-\frac{143}{289}a^{14}-\frac{349}{578}a^{13}+\frac{225}{578}a^{12}+\frac{840}{289}a^{11}-\frac{809}{578}a^{10}+\frac{809}{578}a^{9}-\frac{108}{289}a^{8}-\frac{8039}{578}a^{7}+\frac{3775}{578}a^{6}-\frac{6015}{289}a^{5}+\frac{4219}{578}a^{4}-\frac{1679}{578}a^{3}-\frac{67}{289}a^{2}+\frac{1337}{289}a-\frac{1213}{578}$, $\frac{1433}{1156}a^{15}+\frac{143}{289}a^{14}-\frac{739}{578}a^{13}-\frac{225}{578}a^{12}+\frac{4681}{1156}a^{11}+\frac{809}{578}a^{10}-\frac{581}{1156}a^{9}+\frac{108}{289}a^{8}-\frac{4353}{289}a^{7}-\frac{3775}{578}a^{6}-\frac{18321}{1156}a^{5}-\frac{4219}{578}a^{4}+\frac{1981}{1156}a^{3}+\frac{67}{289}a^{2}+\frac{3407}{1156}a+\frac{635}{578}$, $\frac{635}{578}a^{15}-\frac{143}{289}a^{14}-\frac{349}{578}a^{13}+\frac{225}{578}a^{12}+\frac{840}{289}a^{11}-\frac{809}{578}a^{10}+\frac{809}{578}a^{9}-\frac{108}{289}a^{8}-\frac{8039}{578}a^{7}+\frac{3775}{578}a^{6}-\frac{6015}{289}a^{5}+\frac{4219}{578}a^{4}-\frac{1679}{578}a^{3}-\frac{67}{289}a^{2}+\frac{1337}{289}a-\frac{635}{578}$, $\frac{635}{578}a^{15}+\frac{143}{289}a^{14}-\frac{349}{578}a^{13}-\frac{225}{578}a^{12}+\frac{840}{289}a^{11}+\frac{809}{578}a^{10}+\frac{809}{578}a^{9}+\frac{108}{289}a^{8}-\frac{8039}{578}a^{7}-\frac{3775}{578}a^{6}-\frac{6015}{289}a^{5}-\frac{4219}{578}a^{4}-\frac{1679}{578}a^{3}+\frac{67}{289}a^{2}+\frac{1337}{289}a+\frac{635}{578}$, $\frac{1221}{2312}a^{15}-\frac{1221}{2312}a^{14}-\frac{77}{289}a^{13}+\frac{77}{289}a^{12}+\frac{3087}{2312}a^{11}-\frac{3087}{2312}a^{10}+\frac{1967}{2312}a^{9}-\frac{1967}{2312}a^{8}-\frac{7897}{1156}a^{7}+\frac{7897}{1156}a^{6}-\frac{23803}{2312}a^{5}+\frac{23803}{2312}a^{4}-\frac{2807}{2312}a^{3}+\frac{2807}{2312}a^{2}+\frac{3389}{2312}a-\frac{5701}{2312}$, $\frac{2835}{2312}a^{15}+\frac{2365}{2312}a^{14}-\frac{381}{578}a^{13}-\frac{379}{578}a^{12}+\frac{7125}{2312}a^{11}+\frac{6323}{2312}a^{10}+\frac{4249}{2312}a^{9}+\frac{2831}{2312}a^{8}-\frac{18661}{1156}a^{7}-\frac{15447}{1156}a^{6}-\frac{53265}{2312}a^{5}-\frac{40679}{2312}a^{4}-\frac{4961}{2312}a^{3}-\frac{2271}{2312}a^{2}+\frac{13183}{2312}a+\frac{8241}{2312}$
|
| |
| Regulator: | \( 1411.38797393 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{5}\cdot 1411.38797393 \cdot 1}{2\cdot\sqrt{6350601601600000000}}\cr\approx \mathstrut & 0.175504516976 \end{aligned}\]
Galois group
$C_2^6.(D_4\times S_4)$ (as 16T1759):
| A solvable group of order 12288 |
| The 93 conjugacy class representatives for $C_2^6.(D_4\times S_4)$ |
| Character table for $C_2^6.(D_4\times S_4)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1255.1, 8.4.39375625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.4.16257540100096000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 2.6.2.12a8.2 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 7$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(251\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |