Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} + 3 x^{13} - 11 x^{12} + 16 x^{11} - 17 x^{10} + 16 x^{9} - 13 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-36286162879296875\) \(\medspace = -\,5^{8}\cdot 31^{2}\cdot 131\cdot 859^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}31^{1/2}131^{1/2}859^{1/2}\approx 4176.361454663616$ | ||
Ramified primes: | \(5\), \(31\), \(131\), \(859\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-131}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{43}a^{14}-\frac{7}{43}a^{13}-\frac{8}{43}a^{12}+\frac{7}{43}a^{11}+\frac{5}{43}a^{10}-\frac{16}{43}a^{9}+\frac{15}{43}a^{8}+\frac{15}{43}a^{6}-\frac{16}{43}a^{5}+\frac{5}{43}a^{4}+\frac{7}{43}a^{3}-\frac{8}{43}a^{2}-\frac{7}{43}a+\frac{1}{43}$, $\frac{1}{43}a^{15}-\frac{14}{43}a^{13}-\frac{6}{43}a^{12}+\frac{11}{43}a^{11}+\frac{19}{43}a^{10}-\frac{11}{43}a^{9}+\frac{19}{43}a^{8}+\frac{15}{43}a^{7}+\frac{3}{43}a^{6}-\frac{21}{43}a^{5}-\frac{1}{43}a^{4}-\frac{2}{43}a^{3}-\frac{20}{43}a^{2}-\frac{5}{43}a+\frac{7}{43}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{8}{43}a^{15}-\frac{60}{43}a^{14}+\frac{93}{43}a^{13}+\frac{45}{43}a^{12}-\frac{289}{43}a^{11}+\frac{540}{43}a^{10}-\frac{590}{43}a^{9}+\frac{413}{43}a^{8}-\frac{439}{43}a^{7}+\frac{457}{43}a^{6}-\frac{541}{43}a^{5}+\frac{638}{43}a^{4}-\frac{350}{43}a^{3}+\frac{148}{43}a^{2}+\frac{79}{43}a-\frac{90}{43}$, $a$, $\frac{6}{43}a^{15}-\frac{4}{43}a^{14}+\frac{30}{43}a^{13}-\frac{4}{43}a^{12}-\frac{91}{43}a^{11}+\frac{137}{43}a^{10}-\frac{217}{43}a^{9}+\frac{97}{43}a^{8}-\frac{39}{43}a^{7}+\frac{130}{43}a^{6}-\frac{62}{43}a^{5}+\frac{232}{43}a^{4}-\frac{83}{43}a^{3}-\frac{2}{43}a^{2}+\frac{41}{43}a-\frac{91}{43}$, $\frac{41}{43}a^{15}-\frac{70}{43}a^{14}-\frac{41}{43}a^{13}+\frac{185}{43}a^{12}-\frac{340}{43}a^{11}+\frac{343}{43}a^{10}-\frac{148}{43}a^{9}+\frac{202}{43}a^{8}-\frac{202}{43}a^{7}+\frac{234}{43}a^{6}-\frac{343}{43}a^{5}+\frac{82}{43}a^{4}+\frac{30}{43}a^{3}-\frac{88}{43}a^{2}+\frac{113}{43}a+\frac{2}{43}$, $\frac{6}{43}a^{15}-\frac{4}{43}a^{14}+\frac{30}{43}a^{13}-\frac{4}{43}a^{12}-\frac{91}{43}a^{11}+\frac{137}{43}a^{10}-\frac{217}{43}a^{9}+\frac{97}{43}a^{8}-\frac{39}{43}a^{7}+\frac{130}{43}a^{6}-\frac{62}{43}a^{5}+\frac{232}{43}a^{4}-\frac{83}{43}a^{3}-\frac{2}{43}a^{2}+\frac{84}{43}a-\frac{91}{43}$, $\frac{41}{43}a^{14}+\frac{14}{43}a^{13}-\frac{70}{43}a^{12}+\frac{72}{43}a^{11}-\frac{139}{43}a^{10}-\frac{97}{43}a^{9}+\frac{13}{43}a^{8}+a^{7}+\frac{99}{43}a^{6}+\frac{204}{43}a^{5}+\frac{162}{43}a^{4}-\frac{57}{43}a^{3}+\frac{102}{43}a^{2}-\frac{72}{43}a-\frac{45}{43}$, $\frac{14}{43}a^{15}-\frac{21}{43}a^{14}-\frac{6}{43}a^{13}+\frac{41}{43}a^{12}-\frac{122}{43}a^{11}+\frac{161}{43}a^{10}-\frac{119}{43}a^{9}+\frac{123}{43}a^{8}-\frac{48}{43}a^{7}+\frac{71}{43}a^{6}-\frac{130}{43}a^{5}+\frac{53}{43}a^{4}-\frac{46}{43}a^{3}-\frac{26}{43}a^{2}+\frac{77}{43}a-\frac{52}{43}$, $\frac{85}{43}a^{15}-\frac{71}{43}a^{14}-\frac{91}{43}a^{13}+\frac{273}{43}a^{12}-\frac{551}{43}a^{11}+\frac{357}{43}a^{10}-\frac{272}{43}a^{9}+\frac{378}{43}a^{8}-\frac{230}{43}a^{7}+\frac{609}{43}a^{6}-\frac{348}{43}a^{5}+\frac{205}{43}a^{4}-\frac{22}{43}a^{3}-\frac{143}{43}a^{2}-\frac{14}{43}a+\frac{51}{43}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 40.8815236048 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 40.8815236048 \cdot 1}{2\cdot\sqrt{36286162879296875}}\cr\approx \mathstrut & 0.165937913275 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.4.16643125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(31\) | $\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.1.2 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.1.2 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(131\) | 131.2.0.1 | $x^{2} + 127 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
131.2.1.1 | $x^{2} + 262$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
131.3.0.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
131.3.0.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
131.3.0.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
131.3.0.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
\(859\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |