Normalized defining polynomial
\( x^{16} - 17x^{14} - 61x^{12} + 2237x^{10} - 8301x^{8} - 26241x^{6} + 184736x^{4} - 289089x^{2} + 119411 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[12, 2]$ |
| |
| Discriminant: |
\(860527385904312057534808064\)
\(\medspace = 2^{16}\cdot 43^{3}\cdot 2777^{5}\)
|
| |
| Root discriminant: | \(48.24\) |
| |
| Galois root discriminant: | $2^{63/32}43^{3/4}2777^{1/2}\approx 3463.714482798763$ | ||
| Ramified primes: |
\(2\), \(43\), \(2777\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{119411}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11\cdots 12}a^{14}-\frac{1}{2}a^{13}-\frac{27\cdots 73}{59\cdots 56}a^{12}-\frac{1}{2}a^{11}+\frac{18\cdots 85}{11\cdots 12}a^{10}+\frac{36\cdots 39}{14\cdots 14}a^{8}-\frac{29\cdots 41}{11\cdots 12}a^{6}-\frac{1}{2}a^{5}+\frac{20\cdots 27}{29\cdots 28}a^{4}-\frac{1}{2}a^{3}+\frac{82\cdots 77}{29\cdots 28}a^{2}-\frac{1}{2}a-\frac{25\cdots 61}{11\cdots 12}$, $\frac{1}{11\cdots 12}a^{15}-\frac{27\cdots 73}{59\cdots 56}a^{13}-\frac{1}{2}a^{12}+\frac{18\cdots 85}{11\cdots 12}a^{11}-\frac{1}{2}a^{10}+\frac{36\cdots 39}{14\cdots 14}a^{9}-\frac{29\cdots 41}{11\cdots 12}a^{7}+\frac{20\cdots 27}{29\cdots 28}a^{5}-\frac{1}{2}a^{4}+\frac{82\cdots 77}{29\cdots 28}a^{3}-\frac{1}{2}a^{2}-\frac{25\cdots 61}{11\cdots 12}a-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{316559209304065}{59\cdots 56}a^{14}-\frac{20\cdots 29}{29\cdots 28}a^{12}-\frac{35\cdots 87}{59\cdots 56}a^{10}+\frac{72\cdots 72}{74\cdots 57}a^{8}-\frac{44\cdots 89}{59\cdots 56}a^{6}-\frac{27\cdots 77}{14\cdots 14}a^{4}+\frac{58\cdots 13}{14\cdots 14}a^{2}-\frac{57\cdots 29}{59\cdots 56}$, $\frac{376536879539831}{29\cdots 28}a^{14}-\frac{27\cdots 17}{14\cdots 14}a^{12}-\frac{35\cdots 73}{29\cdots 28}a^{10}+\frac{18\cdots 78}{74\cdots 57}a^{8}-\frac{14\cdots 91}{29\cdots 28}a^{6}-\frac{30\cdots 05}{74\cdots 57}a^{4}+\frac{10\cdots 19}{74\cdots 57}a^{2}-\frac{30\cdots 83}{29\cdots 28}$, $\frac{625282829872521}{59\cdots 56}a^{14}-\frac{46\cdots 97}{29\cdots 28}a^{12}-\frac{57\cdots 55}{59\cdots 56}a^{10}+\frac{15\cdots 22}{74\cdots 57}a^{8}-\frac{25\cdots 97}{59\cdots 56}a^{6}-\frac{52\cdots 73}{14\cdots 14}a^{4}+\frac{18\cdots 87}{14\cdots 14}a^{2}-\frac{37\cdots 81}{59\cdots 56}$, $\frac{12\cdots 93}{59\cdots 56}a^{14}-\frac{90\cdots 05}{29\cdots 28}a^{12}-\frac{11\cdots 75}{59\cdots 56}a^{10}+\frac{30\cdots 55}{74\cdots 57}a^{8}-\frac{46\cdots 49}{59\cdots 56}a^{6}-\frac{10\cdots 83}{14\cdots 14}a^{4}+\frac{33\cdots 69}{14\cdots 14}a^{2}-\frac{81\cdots 09}{59\cdots 56}$, $\frac{3022140947341}{32\cdots 59}a^{14}-\frac{43439186805726}{32\cdots 59}a^{12}-\frac{297050994683501}{32\cdots 59}a^{10}+\frac{59\cdots 08}{32\cdots 59}a^{8}-\frac{95\cdots 32}{32\cdots 59}a^{6}-\frac{99\cdots 83}{32\cdots 59}a^{4}+\frac{29\cdots 76}{32\cdots 59}a^{2}-\frac{20\cdots 64}{32\cdots 59}$, $\frac{471713846576031}{59\cdots 56}a^{14}-\frac{34\cdots 71}{29\cdots 28}a^{12}-\frac{44\cdots 29}{59\cdots 56}a^{10}+\frac{12\cdots 77}{74\cdots 57}a^{8}-\frac{17\cdots 67}{59\cdots 56}a^{6}-\frac{42\cdots 73}{14\cdots 14}a^{4}+\frac{12\cdots 31}{14\cdots 14}a^{2}-\frac{14\cdots 87}{59\cdots 56}$, $\frac{29009552130767}{59\cdots 56}a^{14}-\frac{59165850147775}{29\cdots 28}a^{12}-\frac{70\cdots 29}{59\cdots 56}a^{10}+\frac{30\cdots 92}{74\cdots 57}a^{8}+\frac{48\cdots 41}{59\cdots 56}a^{6}-\frac{34\cdots 39}{14\cdots 14}a^{4}-\frac{16\cdots 59}{14\cdots 14}a^{2}+\frac{58\cdots 57}{59\cdots 56}$, $\frac{215192151662877}{11\cdots 12}a^{15}-\frac{46471976193451}{11\cdots 12}a^{14}-\frac{29\cdots 05}{59\cdots 56}a^{13}+\frac{19\cdots 63}{59\cdots 56}a^{12}+\frac{14\cdots 41}{11\cdots 12}a^{11}-\frac{35\cdots 51}{11\cdots 12}a^{10}+\frac{94\cdots 71}{14\cdots 14}a^{9}-\frac{61\cdots 57}{14\cdots 14}a^{8}-\frac{56\cdots 29}{11\cdots 12}a^{7}+\frac{55\cdots 87}{11\cdots 12}a^{6}-\frac{13\cdots 31}{29\cdots 28}a^{5}+\frac{64\cdots 41}{29\cdots 28}a^{4}+\frac{27\cdots 95}{29\cdots 28}a^{3}-\frac{24\cdots 65}{29\cdots 28}a^{2}-\frac{16\cdots 05}{11\cdots 12}a+\frac{13\cdots 51}{11\cdots 12}$, $\frac{71064260299015}{52\cdots 44}a^{15}+\frac{19\cdots 43}{11\cdots 12}a^{14}-\frac{573480403740367}{26\cdots 72}a^{13}-\frac{12\cdots 79}{59\cdots 56}a^{12}-\frac{52\cdots 73}{52\cdots 44}a^{11}-\frac{23\cdots 97}{11\cdots 12}a^{10}+\frac{19\cdots 23}{65\cdots 18}a^{9}+\frac{43\cdots 05}{14\cdots 14}a^{8}-\frac{46\cdots 55}{52\cdots 44}a^{7}-\frac{10\cdots 07}{11\cdots 12}a^{6}-\frac{54\cdots 29}{13\cdots 36}a^{5}-\frac{16\cdots 49}{29\cdots 28}a^{4}+\frac{28\cdots 13}{13\cdots 36}a^{3}+\frac{25\cdots 97}{29\cdots 28}a^{2}-\frac{11\cdots 27}{52\cdots 44}a+\frac{50\cdots 73}{11\cdots 12}$, $\frac{597067636677895}{11\cdots 12}a^{15}-\frac{9203362298847}{11\cdots 12}a^{14}-\frac{47\cdots 63}{59\cdots 56}a^{13}-\frac{24\cdots 21}{59\cdots 56}a^{12}-\frac{53\cdots 05}{11\cdots 12}a^{11}+\frac{34\cdots 85}{11\cdots 12}a^{10}+\frac{16\cdots 55}{14\cdots 14}a^{9}+\frac{90\cdots 97}{14\cdots 14}a^{8}-\frac{25\cdots 71}{11\cdots 12}a^{7}-\frac{42\cdots 61}{11\cdots 12}a^{6}-\frac{56\cdots 49}{29\cdots 28}a^{5}-\frac{32\cdots 43}{29\cdots 28}a^{4}+\frac{17\cdots 93}{29\cdots 28}a^{3}+\frac{16\cdots 95}{29\cdots 28}a^{2}-\frac{24\cdots 07}{11\cdots 12}a-\frac{39\cdots 57}{11\cdots 12}$, $\frac{67\cdots 29}{11\cdots 12}a^{15}-\frac{90\cdots 49}{11\cdots 12}a^{14}-\frac{51\cdots 69}{59\cdots 56}a^{13}+\frac{68\cdots 05}{59\cdots 56}a^{12}-\frac{61\cdots 23}{11\cdots 12}a^{11}+\frac{81\cdots 15}{11\cdots 12}a^{10}+\frac{17\cdots 85}{14\cdots 14}a^{9}-\frac{23\cdots 55}{14\cdots 14}a^{8}-\frac{29\cdots 73}{11\cdots 12}a^{7}+\frac{38\cdots 77}{11\cdots 12}a^{6}-\frac{58\cdots 83}{29\cdots 28}a^{5}+\frac{78\cdots 75}{29\cdots 28}a^{4}+\frac{20\cdots 91}{29\cdots 28}a^{3}-\frac{26\cdots 07}{29\cdots 28}a^{2}-\frac{43\cdots 17}{11\cdots 12}a+\frac{55\cdots 53}{11\cdots 12}$, $\frac{28\cdots 61}{11\cdots 12}a^{15}-\frac{11\cdots 17}{11\cdots 12}a^{14}-\frac{15\cdots 73}{59\cdots 56}a^{13}+\frac{79\cdots 37}{59\cdots 56}a^{12}-\frac{39\cdots 07}{11\cdots 12}a^{11}+\frac{10\cdots 03}{11\cdots 12}a^{10}+\frac{56\cdots 25}{14\cdots 14}a^{9}-\frac{27\cdots 85}{14\cdots 14}a^{8}+\frac{74\cdots 27}{11\cdots 12}a^{7}+\frac{36\cdots 69}{11\cdots 12}a^{6}-\frac{26\cdots 35}{29\cdots 28}a^{5}+\frac{90\cdots 47}{29\cdots 28}a^{4}-\frac{92\cdots 09}{29\cdots 28}a^{3}-\frac{27\cdots 95}{29\cdots 28}a^{2}+\frac{39\cdots 51}{11\cdots 12}a+\frac{81\cdots 13}{11\cdots 12}$, $\frac{47\cdots 03}{11\cdots 12}a^{15}-\frac{60\cdots 57}{11\cdots 12}a^{14}-\frac{36\cdots 27}{59\cdots 56}a^{13}+\frac{46\cdots 77}{59\cdots 56}a^{12}-\frac{43\cdots 57}{11\cdots 12}a^{11}+\frac{54\cdots 51}{11\cdots 12}a^{10}+\frac{12\cdots 31}{14\cdots 14}a^{9}-\frac{15\cdots 93}{14\cdots 14}a^{8}-\frac{20\cdots 91}{11\cdots 12}a^{7}+\frac{27\cdots 29}{11\cdots 12}a^{6}-\frac{41\cdots 89}{29\cdots 28}a^{5}+\frac{52\cdots 03}{29\cdots 28}a^{4}+\frac{14\cdots 17}{29\cdots 28}a^{3}-\frac{18\cdots 35}{29\cdots 28}a^{2}-\frac{30\cdots 35}{11\cdots 12}a+\frac{39\cdots 33}{11\cdots 12}$
|
| |
| Regulator: | \( 246901537.585 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 246901537.585 \cdot 1}{2\cdot\sqrt{860527385904312057534808064}}\cr\approx \mathstrut & 0.680504710056 \end{aligned}\] (assuming GRH)
Galois group
$C_2^7.C_2\wr S_4$ (as 16T1850):
| A solvable group of order 49152 |
| The 104 conjugacy class representatives for $C_2^7.C_2\wr S_4$ |
| Character table for $C_2^7.C_2\wr S_4$ |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.6.2.12a8.2 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 7$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(43\)
| 43.3.1.0a1.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 43.3.1.0a1.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 43.1.4.3a1.2 | $x^{4} + 129$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 43.6.1.0a1.1 | $x^{6} + 19 x^{3} + 28 x^{2} + 21 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(2777\)
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |