Normalized defining polynomial
\( x^{16} - 2 x^{15} - 35 x^{14} + 72 x^{13} + 448 x^{12} - 984 x^{11} - 2681 x^{10} + 6698 x^{9} + \cdots + 25763 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[12, 2]$ |
| |
| Discriminant: |
\(860527385904312057534808064\)
\(\medspace = 2^{16}\cdot 43^{3}\cdot 2777^{5}\)
|
| |
| Root discriminant: | \(48.24\) |
| |
| Galois root discriminant: | $2^{63/32}43^{3/4}2777^{1/2}\approx 3463.714482798763$ | ||
| Ramified primes: |
\(2\), \(43\), \(2777\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{119411}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{46}a^{14}+\frac{5}{46}a^{13}-\frac{5}{46}a^{12}+\frac{6}{23}a^{11}+\frac{5}{46}a^{10}+\frac{3}{46}a^{9}-\frac{17}{46}a^{8}-\frac{7}{23}a^{7}-\frac{17}{46}a^{6}-\frac{9}{46}a^{5}+\frac{4}{23}a^{4}+\frac{7}{46}a^{3}+\frac{10}{23}a^{2}-\frac{15}{46}a+\frac{19}{46}$, $\frac{1}{36\cdots 42}a^{15}-\frac{92\cdots 99}{15\cdots 54}a^{14}+\frac{37\cdots 79}{36\cdots 42}a^{13}-\frac{53\cdots 23}{18\cdots 21}a^{12}-\frac{11\cdots 63}{36\cdots 42}a^{11}-\frac{12\cdots 33}{36\cdots 42}a^{10}+\frac{16\cdots 41}{36\cdots 42}a^{9}+\frac{48\cdots 71}{18\cdots 21}a^{8}-\frac{11\cdots 53}{36\cdots 42}a^{7}-\frac{34\cdots 77}{36\cdots 42}a^{6}+\frac{84\cdots 41}{18\cdots 21}a^{5}+\frac{17\cdots 03}{36\cdots 42}a^{4}+\frac{11\cdots 40}{18\cdots 21}a^{3}+\frac{63\cdots 79}{15\cdots 54}a^{2}-\frac{12\cdots 53}{36\cdots 42}a+\frac{29\cdots 52}{18\cdots 21}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{80\cdots 21}{36\cdots 42}a^{15}-\frac{77\cdots 10}{78\cdots 27}a^{14}-\frac{11\cdots 68}{18\cdots 21}a^{13}+\frac{12\cdots 97}{36\cdots 42}a^{12}+\frac{21\cdots 57}{36\cdots 42}a^{11}-\frac{75\cdots 62}{18\cdots 21}a^{10}-\frac{17\cdots 57}{18\cdots 21}a^{9}+\frac{90\cdots 31}{36\cdots 42}a^{8}-\frac{34\cdots 93}{36\cdots 42}a^{7}-\frac{16\cdots 75}{18\cdots 21}a^{6}+\frac{19\cdots 35}{36\cdots 42}a^{5}+\frac{77\cdots 41}{36\cdots 42}a^{4}-\frac{44\cdots 73}{36\cdots 42}a^{3}-\frac{51\cdots 17}{15\cdots 54}a^{2}+\frac{15\cdots 71}{18\cdots 21}a+\frac{69\cdots 33}{36\cdots 42}$, $\frac{11\cdots 61}{36\cdots 42}a^{15}-\frac{50\cdots 65}{78\cdots 27}a^{14}-\frac{19\cdots 34}{18\cdots 21}a^{13}+\frac{87\cdots 47}{36\cdots 42}a^{12}+\frac{51\cdots 17}{36\cdots 42}a^{11}-\frac{62\cdots 66}{18\cdots 21}a^{10}-\frac{14\cdots 25}{18\cdots 21}a^{9}+\frac{89\cdots 19}{36\cdots 42}a^{8}+\frac{77\cdots 15}{36\cdots 42}a^{7}-\frac{17\cdots 33}{18\cdots 21}a^{6}-\frac{10\cdots 73}{36\cdots 42}a^{5}+\frac{80\cdots 65}{36\cdots 42}a^{4}+\frac{13\cdots 03}{36\cdots 42}a^{3}-\frac{39\cdots 03}{15\cdots 54}a^{2}-\frac{37\cdots 09}{18\cdots 21}a+\frac{43\cdots 67}{36\cdots 42}$, $\frac{23\cdots 15}{18\cdots 21}a^{15}-\frac{25\cdots 68}{78\cdots 27}a^{14}-\frac{76\cdots 68}{18\cdots 21}a^{13}+\frac{20\cdots 23}{18\cdots 21}a^{12}+\frac{86\cdots 25}{18\cdots 21}a^{11}-\frac{26\cdots 55}{18\cdots 21}a^{10}-\frac{39\cdots 86}{18\cdots 21}a^{9}+\frac{16\cdots 72}{18\cdots 21}a^{8}+\frac{65\cdots 17}{18\cdots 21}a^{7}-\frac{54\cdots 81}{18\cdots 21}a^{6}-\frac{28\cdots 33}{18\cdots 21}a^{5}+\frac{10\cdots 12}{18\cdots 21}a^{4}+\frac{11\cdots 45}{18\cdots 21}a^{3}-\frac{41\cdots 84}{78\cdots 27}a^{2}-\frac{13\cdots 20}{18\cdots 21}a+\frac{26\cdots 93}{18\cdots 21}$, $\frac{15\cdots 01}{18\cdots 21}a^{15}-\frac{18\cdots 69}{78\cdots 27}a^{14}-\frac{49\cdots 04}{18\cdots 21}a^{13}+\frac{14\cdots 06}{18\cdots 21}a^{12}+\frac{54\cdots 57}{18\cdots 21}a^{11}-\frac{18\cdots 60}{18\cdots 21}a^{10}-\frac{23\cdots 54}{18\cdots 21}a^{9}+\frac{10\cdots 50}{18\cdots 21}a^{8}+\frac{31\cdots 83}{18\cdots 21}a^{7}-\frac{36\cdots 21}{18\cdots 21}a^{6}+\frac{88\cdots 01}{18\cdots 21}a^{5}+\frac{72\cdots 65}{18\cdots 21}a^{4}+\frac{43\cdots 97}{18\cdots 21}a^{3}-\frac{29\cdots 91}{78\cdots 27}a^{2}-\frac{97\cdots 14}{18\cdots 21}a+\frac{19\cdots 62}{18\cdots 21}$, $\frac{37\cdots 41}{36\cdots 42}a^{15}-\frac{26\cdots 80}{78\cdots 27}a^{14}-\frac{57\cdots 86}{18\cdots 21}a^{13}+\frac{41\cdots 63}{36\cdots 42}a^{12}+\frac{11\cdots 49}{36\cdots 42}a^{11}-\frac{25\cdots 87}{18\cdots 21}a^{10}-\frac{16\cdots 55}{18\cdots 21}a^{9}+\frac{28\cdots 15}{36\cdots 42}a^{8}-\frac{45\cdots 29}{36\cdots 42}a^{7}-\frac{44\cdots 79}{18\cdots 21}a^{6}+\frac{37\cdots 99}{36\cdots 42}a^{5}+\frac{17\cdots 57}{36\cdots 42}a^{4}-\frac{58\cdots 89}{36\cdots 42}a^{3}-\frac{79\cdots 99}{15\cdots 54}a^{2}+\frac{17\cdots 81}{18\cdots 21}a+\frac{72\cdots 45}{36\cdots 42}$, $\frac{42\cdots 63}{36\cdots 42}a^{15}-\frac{23\cdots 34}{78\cdots 27}a^{14}-\frac{69\cdots 38}{18\cdots 21}a^{13}+\frac{38\cdots 59}{36\cdots 42}a^{12}+\frac{16\cdots 31}{36\cdots 42}a^{11}-\frac{24\cdots 26}{18\cdots 21}a^{10}-\frac{37\cdots 79}{18\cdots 21}a^{9}+\frac{30\cdots 19}{36\cdots 42}a^{8}+\frac{14\cdots 81}{36\cdots 42}a^{7}-\frac{54\cdots 54}{18\cdots 21}a^{6}-\frac{84\cdots 71}{36\cdots 42}a^{5}+\frac{22\cdots 95}{36\cdots 42}a^{4}+\frac{22\cdots 97}{36\cdots 42}a^{3}-\frac{98\cdots 85}{15\cdots 54}a^{2}-\frac{13\cdots 23}{18\cdots 21}a+\frac{79\cdots 49}{36\cdots 42}$, $\frac{35\cdots 18}{78\cdots 27}a^{15}-\frac{72\cdots 99}{78\cdots 27}a^{14}-\frac{11\cdots 68}{78\cdots 27}a^{13}+\frac{25\cdots 79}{78\cdots 27}a^{12}+\frac{13\cdots 16}{78\cdots 27}a^{11}-\frac{34\cdots 65}{78\cdots 27}a^{10}-\frac{69\cdots 84}{78\cdots 27}a^{9}+\frac{22\cdots 14}{78\cdots 27}a^{8}+\frac{14\cdots 58}{78\cdots 27}a^{7}-\frac{77\cdots 20}{78\cdots 27}a^{6}-\frac{16\cdots 58}{78\cdots 27}a^{5}+\frac{14\cdots 89}{78\cdots 27}a^{4}+\frac{29\cdots 76}{78\cdots 27}a^{3}-\frac{12\cdots 93}{78\cdots 27}a^{2}-\frac{16\cdots 22}{78\cdots 27}a+\frac{39\cdots 24}{78\cdots 27}$, $\frac{24\cdots 53}{36\cdots 42}a^{15}-\frac{16\cdots 36}{78\cdots 27}a^{14}-\frac{38\cdots 88}{18\cdots 21}a^{13}+\frac{26\cdots 79}{36\cdots 42}a^{12}+\frac{77\cdots 73}{36\cdots 42}a^{11}-\frac{15\cdots 96}{18\cdots 21}a^{10}-\frac{13\cdots 91}{18\cdots 21}a^{9}+\frac{17\cdots 59}{36\cdots 42}a^{8}-\frac{14\cdots 89}{36\cdots 42}a^{7}-\frac{27\cdots 77}{18\cdots 21}a^{6}+\frac{14\cdots 59}{36\cdots 42}a^{5}+\frac{10\cdots 87}{36\cdots 42}a^{4}-\frac{15\cdots 09}{36\cdots 42}a^{3}-\frac{43\cdots 99}{15\cdots 54}a^{2}-\frac{12\cdots 14}{18\cdots 21}a+\frac{28\cdots 75}{36\cdots 42}$, $\frac{32\cdots 04}{18\cdots 21}a^{15}-\frac{27\cdots 25}{36\cdots 42}a^{14}-\frac{18\cdots 35}{36\cdots 42}a^{13}+\frac{91\cdots 79}{36\cdots 42}a^{12}+\frac{68\cdots 72}{18\cdots 21}a^{11}-\frac{10\cdots 63}{36\cdots 42}a^{10}+\frac{84\cdots 91}{36\cdots 42}a^{9}+\frac{54\cdots 95}{36\cdots 42}a^{8}-\frac{20\cdots 93}{18\cdots 21}a^{7}-\frac{15\cdots 33}{36\cdots 42}a^{6}+\frac{15\cdots 85}{36\cdots 42}a^{5}+\frac{13\cdots 36}{18\cdots 21}a^{4}-\frac{23\cdots 71}{36\cdots 42}a^{3}-\frac{15\cdots 59}{18\cdots 21}a^{2}+\frac{12\cdots 01}{36\cdots 42}a+\frac{13\cdots 93}{36\cdots 42}$, $\frac{39\cdots 06}{18\cdots 21}a^{15}-\frac{25\cdots 15}{36\cdots 42}a^{14}-\frac{24\cdots 39}{36\cdots 42}a^{13}+\frac{86\cdots 25}{36\cdots 42}a^{12}+\frac{13\cdots 37}{18\cdots 21}a^{11}-\frac{10\cdots 97}{36\cdots 42}a^{10}-\frac{94\cdots 49}{36\cdots 42}a^{9}+\frac{65\cdots 25}{36\cdots 42}a^{8}-\frac{95\cdots 65}{18\cdots 21}a^{7}-\frac{21\cdots 73}{36\cdots 42}a^{6}+\frac{77\cdots 17}{36\cdots 42}a^{5}+\frac{22\cdots 82}{18\cdots 21}a^{4}-\frac{13\cdots 81}{36\cdots 42}a^{3}-\frac{24\cdots 47}{18\cdots 21}a^{2}+\frac{77\cdots 11}{36\cdots 42}a+\frac{20\cdots 37}{36\cdots 42}$, $\frac{24\cdots 05}{36\cdots 42}a^{15}-\frac{25\cdots 35}{36\cdots 42}a^{14}-\frac{86\cdots 87}{36\cdots 42}a^{13}+\frac{45\cdots 92}{18\cdots 21}a^{12}+\frac{11\cdots 71}{36\cdots 42}a^{11}-\frac{12\cdots 47}{36\cdots 42}a^{10}-\frac{68\cdots 93}{36\cdots 42}a^{9}+\frac{40\cdots 47}{18\cdots 21}a^{8}+\frac{24\cdots 67}{36\cdots 42}a^{7}-\frac{30\cdots 27}{36\cdots 42}a^{6}-\frac{34\cdots 58}{18\cdots 21}a^{5}+\frac{51\cdots 85}{36\cdots 42}a^{4}+\frac{67\cdots 87}{18\cdots 21}a^{3}+\frac{12\cdots 93}{36\cdots 42}a^{2}-\frac{77\cdots 21}{36\cdots 42}a-\frac{16\cdots 32}{18\cdots 21}$, $\frac{41\cdots 56}{78\cdots 27}a^{15}-\frac{10\cdots 51}{36\cdots 42}a^{14}-\frac{51\cdots 83}{36\cdots 42}a^{13}+\frac{35\cdots 65}{36\cdots 42}a^{12}+\frac{15\cdots 67}{18\cdots 21}a^{11}-\frac{44\cdots 33}{36\cdots 42}a^{10}+\frac{18\cdots 83}{36\cdots 42}a^{9}+\frac{25\cdots 45}{36\cdots 42}a^{8}-\frac{13\cdots 58}{18\cdots 21}a^{7}-\frac{79\cdots 49}{36\cdots 42}a^{6}+\frac{11\cdots 07}{36\cdots 42}a^{5}+\frac{81\cdots 45}{18\cdots 21}a^{4}-\frac{22\cdots 61}{36\cdots 42}a^{3}-\frac{11\cdots 06}{18\cdots 21}a^{2}+\frac{15\cdots 69}{36\cdots 42}a+\frac{15\cdots 91}{36\cdots 42}$, $\frac{37\cdots 41}{36\cdots 42}a^{15}-\frac{23\cdots 96}{18\cdots 21}a^{14}-\frac{63\cdots 09}{18\cdots 21}a^{13}+\frac{17\cdots 13}{36\cdots 42}a^{12}+\frac{15\cdots 93}{36\cdots 42}a^{11}-\frac{56\cdots 59}{78\cdots 27}a^{10}-\frac{40\cdots 21}{18\cdots 21}a^{9}+\frac{17\cdots 95}{36\cdots 42}a^{8}+\frac{22\cdots 89}{36\cdots 42}a^{7}-\frac{33\cdots 81}{18\cdots 21}a^{6}-\frac{42\cdots 41}{36\cdots 42}a^{5}+\frac{13\cdots 71}{36\cdots 42}a^{4}+\frac{49\cdots 65}{36\cdots 42}a^{3}-\frac{13\cdots 15}{36\cdots 42}a^{2}-\frac{12\cdots 34}{18\cdots 21}a+\frac{57\cdots 03}{36\cdots 42}$
|
| |
| Regulator: | \( 83571859.9339 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 83571859.9339 \cdot 1}{2\cdot\sqrt{860527385904312057534808064}}\cr\approx \mathstrut & 0.230338963740 \end{aligned}\] (assuming GRH)
Galois group
$C_2^7.C_2\wr S_4$ (as 16T1850):
| A solvable group of order 49152 |
| The 104 conjugacy class representatives for $C_2^7.C_2\wr S_4$ |
| Character table for $C_2^7.C_2\wr S_4$ |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ |
| 2.6.2.12a8.2 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 7$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(43\)
| 43.3.1.0a1.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 43.3.1.0a1.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 43.1.4.3a1.2 | $x^{4} + 129$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 43.6.1.0a1.1 | $x^{6} + 19 x^{3} + 28 x^{2} + 21 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(2777\)
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |