Normalized defining polynomial
\( x^{16} + 20x^{14} + 164x^{12} + 710x^{10} + 1742x^{8} + 2420x^{6} + 1800x^{4} + 625x^{2} + 67 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(125860667059166486215733248\)
\(\medspace = 2^{12}\cdot 67\cdot 2777^{6}\)
|
| |
| Root discriminant: | \(42.78\) |
| |
| Galois root discriminant: | $2^{63/32}67^{1/2}2777^{1/2}\approx 1688.410892187069$ | ||
| Ramified primes: |
\(2\), \(67\), \(2777\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{67}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{128}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{44}$, which has order $44$ (assuming GRH) |
| |
| Narrow class group: | $C_{44}$, which has order $44$ (assuming GRH) |
| |
| Relative class number: | $44$ (assuming GRH) |
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{4}+5a^{2}+4$, $2a^{12}+30a^{10}+171a^{8}+460a^{6}+585a^{4}+300a^{2}+36$, $2a^{12}+30a^{10}+171a^{8}+460a^{6}+586a^{4}+305a^{2}+41$, $a^{14}+17a^{12}+115a^{10}+395a^{8}+728a^{6}+696a^{4}+298a^{2}+36$, $a^{14}+17a^{12}+115a^{10}+395a^{8}+728a^{6}+696a^{4}+298a^{2}+35$, $3a^{12}+45a^{10}+256a^{8}+685a^{6}+862a^{4}+434a^{2}+50$, $a^{14}+19a^{12}+145a^{10}+566a^{8}+1188a^{6}+1282a^{4}+603a^{2}+77$
|
| |
| Regulator: | \( 37704.042506 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 37704.042506 \cdot 44}{2\cdot\sqrt{125860667059166486215733248}}\cr\approx \mathstrut & 0.17959925443 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8.\GL(2,3)$ (as 16T1761):
| A solvable group of order 12288 |
| The 64 conjugacy class representatives for $C_2^8.\GL(2,3)$ |
| Character table for $C_2^8.\GL(2,3)$ |
Intermediate fields
| 4.4.2777.1, 8.8.21415471433.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ | $16$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(67\)
| $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 67.1.2.1a1.1 | $x^{2} + 67$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 67.2.1.0a1.1 | $x^{2} + 63 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 67.2.1.0a1.1 | $x^{2} + 63 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 67.2.1.0a1.1 | $x^{2} + 63 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 67.2.1.0a1.1 | $x^{2} + 63 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 67.4.1.0a1.1 | $x^{4} + 8 x^{2} + 54 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(2777\)
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2777}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |