Properties

Label 16.0.115...000.1
Degree $16$
Signature $[0, 8]$
Discriminant $1.154\times 10^{29}$
Root discriminant \(65.52\)
Ramified primes $2,5,1652141$
Class number $11060$ (GRH)
Class group [2, 5530] (GRH)
Galois group $C_2^6.S_4\wr C_2$ (as 16T1872)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141)
 
gp: K = bnfinit(y^16 + 85*y^14 + 2709*y^12 + 41896*y^10 + 344677*y^8 + 1544032*y^6 + 3659235*y^4 + 4140999*y^2 + 1652141, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141)
 

\( x^{16} + 85 x^{14} + 2709 x^{12} + 41896 x^{10} + 344677 x^{8} + 1544032 x^{6} + 3659235 x^{4} + \cdots + 1652141 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(115446638528641004057600000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 1652141^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(65.52\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(5\), \(1652141\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1652141}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{16\!\cdots\!05}a^{14}-\frac{17\!\cdots\!69}{16\!\cdots\!05}a^{12}-\frac{14\!\cdots\!13}{33\!\cdots\!61}a^{10}-\frac{15\!\cdots\!29}{16\!\cdots\!05}a^{8}+\frac{22\!\cdots\!68}{16\!\cdots\!05}a^{6}+\frac{65\!\cdots\!02}{33\!\cdots\!61}a^{4}+\frac{13\!\cdots\!98}{33\!\cdots\!61}a^{2}+\frac{31\!\cdots\!09}{16\!\cdots\!05}$, $\frac{1}{16\!\cdots\!05}a^{15}-\frac{17\!\cdots\!69}{16\!\cdots\!05}a^{13}-\frac{14\!\cdots\!13}{33\!\cdots\!61}a^{11}-\frac{15\!\cdots\!29}{16\!\cdots\!05}a^{9}+\frac{22\!\cdots\!68}{16\!\cdots\!05}a^{7}+\frac{65\!\cdots\!02}{33\!\cdots\!61}a^{5}+\frac{13\!\cdots\!98}{33\!\cdots\!61}a^{3}+\frac{31\!\cdots\!09}{16\!\cdots\!05}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{5530}$, which has order $11060$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{97576214}{13600451765645}a^{14}+\frac{7945151054}{13600451765645}a^{12}+\frac{47348100121}{2720090353129}a^{10}+\frac{3305937614269}{13600451765645}a^{8}+\frac{23620639467682}{13600451765645}a^{6}+\frac{17704729568449}{2720090353129}a^{4}+\frac{32853308773438}{2720090353129}a^{2}+\frac{95899959260976}{13600451765645}$, $\frac{77\!\cdots\!13}{16\!\cdots\!05}a^{14}+\frac{63\!\cdots\!13}{16\!\cdots\!05}a^{12}+\frac{37\!\cdots\!72}{33\!\cdots\!61}a^{10}+\frac{25\!\cdots\!63}{16\!\cdots\!05}a^{8}+\frac{17\!\cdots\!24}{16\!\cdots\!05}a^{6}+\frac{12\!\cdots\!85}{33\!\cdots\!61}a^{4}+\frac{16\!\cdots\!60}{33\!\cdots\!61}a^{2}+\frac{47\!\cdots\!22}{16\!\cdots\!05}$, $\frac{77\!\cdots\!13}{16\!\cdots\!05}a^{14}+\frac{63\!\cdots\!13}{16\!\cdots\!05}a^{12}+\frac{37\!\cdots\!72}{33\!\cdots\!61}a^{10}+\frac{25\!\cdots\!63}{16\!\cdots\!05}a^{8}+\frac{17\!\cdots\!24}{16\!\cdots\!05}a^{6}+\frac{12\!\cdots\!85}{33\!\cdots\!61}a^{4}+\frac{16\!\cdots\!60}{33\!\cdots\!61}a^{2}+\frac{21\!\cdots\!27}{16\!\cdots\!05}$, $\frac{43\!\cdots\!13}{16\!\cdots\!05}a^{14}+\frac{35\!\cdots\!73}{16\!\cdots\!05}a^{12}+\frac{21\!\cdots\!17}{33\!\cdots\!61}a^{10}+\frac{15\!\cdots\!58}{16\!\cdots\!05}a^{8}+\frac{11\!\cdots\!14}{16\!\cdots\!05}a^{6}+\frac{97\!\cdots\!56}{33\!\cdots\!61}a^{4}+\frac{24\!\cdots\!82}{33\!\cdots\!61}a^{2}+\frac{13\!\cdots\!67}{16\!\cdots\!05}$, $\frac{43\!\cdots\!13}{16\!\cdots\!05}a^{14}+\frac{35\!\cdots\!73}{16\!\cdots\!05}a^{12}+\frac{21\!\cdots\!17}{33\!\cdots\!61}a^{10}+\frac{15\!\cdots\!58}{16\!\cdots\!05}a^{8}+\frac{11\!\cdots\!14}{16\!\cdots\!05}a^{6}+\frac{97\!\cdots\!56}{33\!\cdots\!61}a^{4}+\frac{24\!\cdots\!82}{33\!\cdots\!61}a^{2}+\frac{11\!\cdots\!62}{16\!\cdots\!05}$, $\frac{10\!\cdots\!41}{16\!\cdots\!05}a^{14}+\frac{97\!\cdots\!41}{16\!\cdots\!05}a^{12}+\frac{68\!\cdots\!84}{33\!\cdots\!61}a^{10}+\frac{58\!\cdots\!81}{16\!\cdots\!05}a^{8}+\frac{53\!\cdots\!23}{16\!\cdots\!05}a^{6}+\frac{49\!\cdots\!30}{33\!\cdots\!61}a^{4}+\frac{10\!\cdots\!81}{33\!\cdots\!61}a^{2}+\frac{34\!\cdots\!89}{16\!\cdots\!05}$, $\frac{91\!\cdots\!72}{33\!\cdots\!61}a^{14}+\frac{74\!\cdots\!67}{33\!\cdots\!61}a^{12}+\frac{21\!\cdots\!01}{33\!\cdots\!61}a^{10}+\frac{29\!\cdots\!83}{33\!\cdots\!61}a^{8}+\frac{20\!\cdots\!35}{33\!\cdots\!61}a^{6}+\frac{65\!\cdots\!41}{33\!\cdots\!61}a^{4}+\frac{96\!\cdots\!73}{33\!\cdots\!61}a^{2}+\frac{47\!\cdots\!51}{33\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6960.86418224 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 6960.86418224 \cdot 11060}{2\cdot\sqrt{115446638528641004057600000000}}\cr\approx \mathstrut & 0.275192499105 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 85*x^14 + 2709*x^12 + 41896*x^10 + 344677*x^8 + 1544032*x^6 + 3659235*x^4 + 4140999*x^2 + 1652141);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^6.S_4\wr C_2$ (as 16T1872):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 73728
The 77 conjugacy class representatives for $C_2^6.S_4\wr C_2$
Character table for $C_2^6.S_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.1032588125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $16$ R ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ $16$ ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ $16$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$2$$8$$16$
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.6.3.1$x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(1652141\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$