Normalized defining polynomial
\( x^{15} - 33 x^{13} - 40 x^{12} - 90 x^{11} + 54 x^{10} + 1791 x^{9} - 954 x^{8} + 6819 x^{7} + 25096 x^{6} - 2367 x^{5} - 52062 x^{4} - 63600 x^{3} - 29592 x^{2} + 6576 x + 4384 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-773560756544273759852688384=-\,2^{10}\cdot 3^{21}\cdot 137^{2}\cdot 1567^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 137, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{5} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{5}{12} a^{6} - \frac{1}{2} a^{5} - \frac{1}{12} a^{4} - \frac{1}{3} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a$, $\frac{1}{72} a^{13} - \frac{1}{36} a^{12} - \frac{1}{72} a^{11} + \frac{1}{36} a^{10} - \frac{1}{36} a^{9} + \frac{1}{4} a^{8} + \frac{19}{72} a^{7} + \frac{2}{9} a^{6} - \frac{25}{72} a^{5} - \frac{7}{36} a^{4} + \frac{11}{24} a^{3} + \frac{2}{9} a^{2} + \frac{7}{18} a - \frac{2}{9}$, $\frac{1}{262139234794749959801930791056} a^{14} - \frac{39482676838014513978424927}{65534808698687489950482697764} a^{13} + \frac{198226211010341098292542405}{87379744931583319933976930352} a^{12} - \frac{2580410142370500761985185117}{65534808698687489950482697764} a^{11} + \frac{5273967300377620338613836137}{43689872465791659966988465176} a^{10} - \frac{11039558336941750196938935997}{131069617397374979900965395528} a^{9} + \frac{28887552077948516425094465095}{262139234794749959801930791056} a^{8} - \frac{48525402150269316040173130367}{131069617397374979900965395528} a^{7} - \frac{37232217208283327006921706487}{87379744931583319933976930352} a^{6} - \frac{8966745323503616744197525039}{21844936232895829983494232588} a^{5} + \frac{52226391759706110606014921185}{262139234794749959801930791056} a^{4} + \frac{11042686102635054039894417023}{131069617397374979900965395528} a^{3} - \frac{13050344517034063630566490919}{32767404349343744975241348882} a^{2} - \frac{51180401335192150059325490}{1820411352741319165291186049} a - \frac{348855579838829196680513413}{16383702174671872487620674441}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 197659874.612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 58320 |
| The 72 conjugacy class representatives for [3^5:2]S(5) are not computed |
| Character table for [3^5:2]S(5) is not computed |
Intermediate fields
| 5.3.14103.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.18.49 | $x^{12} + 3 x^{11} - 6 x^{10} - 3 x^{9} + 9 x^{7} + 3 x^{6} - 9 x^{5} - 9 x^{4} - 9$ | $6$ | $2$ | $18$ | 12T119 | $[3/2, 2, 2]_{2}^{4}$ | |
| 137 | Data not computed | ||||||
| 1567 | Data not computed | ||||||