Normalized defining polynomial
\( x^{14} - 3 x^{13} - 2 x^{12} + x^{11} + 30 x^{10} + 45 x^{9} - 200 x^{8} - 45 x^{7} + 257 x^{6} + \cdots + 523 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[4, 5]$ |
| |
| Discriminant: |
\(-25473388759225315363\)
\(\medspace = -\,7^{3}\cdot 13^{6}\cdot 109^{5}\)
|
| |
| Root discriminant: | \(24.33\) |
| |
| Galois root discriminant: | $7^{1/2}13^{3/4}109^{1/2}\approx 189.11230288198414$ | ||
| Ramified primes: |
\(7\), \(13\), \(109\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-763}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{20\cdots 73}a^{13}-\frac{45\cdots 70}{20\cdots 73}a^{12}-\frac{209067191004083}{15\cdots 21}a^{11}+\frac{58\cdots 70}{20\cdots 73}a^{10}-\frac{46973154904851}{15\cdots 21}a^{9}-\frac{44\cdots 62}{20\cdots 73}a^{8}-\frac{30\cdots 21}{20\cdots 73}a^{7}-\frac{55\cdots 55}{20\cdots 73}a^{6}+\frac{55\cdots 80}{20\cdots 73}a^{5}-\frac{286416571035642}{15\cdots 21}a^{4}+\frac{22\cdots 84}{20\cdots 73}a^{3}+\frac{56\cdots 80}{20\cdots 73}a^{2}+\frac{22\cdots 26}{20\cdots 73}a-\frac{80\cdots 43}{20\cdots 73}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{305125172505341}{20\cdots 73}a^{13}-\frac{11\cdots 71}{20\cdots 73}a^{12}+\frac{26537635373607}{15\cdots 21}a^{11}-\frac{340469965838867}{20\cdots 73}a^{10}+\frac{681866938083748}{15\cdots 21}a^{9}+\frac{69\cdots 14}{20\cdots 73}a^{8}-\frac{61\cdots 99}{20\cdots 73}a^{7}+\frac{39\cdots 11}{20\cdots 73}a^{6}+\frac{29\cdots 21}{20\cdots 73}a^{5}-\frac{50\cdots 27}{15\cdots 21}a^{4}+\frac{24\cdots 84}{20\cdots 73}a^{3}-\frac{11\cdots 19}{20\cdots 73}a^{2}-\frac{30\cdots 95}{20\cdots 73}a+\frac{12\cdots 94}{20\cdots 73}$, $\frac{334914768653626}{20\cdots 73}a^{13}-\frac{13\cdots 58}{20\cdots 73}a^{12}+\frac{59071740598136}{15\cdots 21}a^{11}-\frac{746542798170008}{20\cdots 73}a^{10}+\frac{838381570414618}{15\cdots 21}a^{9}+\frac{38\cdots 16}{20\cdots 73}a^{8}-\frac{67\cdots 04}{20\cdots 73}a^{7}+\frac{55\cdots 89}{20\cdots 73}a^{6}+\frac{14\cdots 62}{20\cdots 73}a^{5}-\frac{38\cdots 89}{15\cdots 21}a^{4}+\frac{25\cdots 28}{20\cdots 73}a^{3}-\frac{15\cdots 42}{20\cdots 73}a^{2}-\frac{30\cdots 37}{20\cdots 73}a+\frac{11\cdots 82}{20\cdots 73}$, $\frac{305125172505341}{20\cdots 73}a^{13}-\frac{11\cdots 71}{20\cdots 73}a^{12}+\frac{26537635373607}{15\cdots 21}a^{11}-\frac{340469965838867}{20\cdots 73}a^{10}+\frac{681866938083748}{15\cdots 21}a^{9}+\frac{69\cdots 14}{20\cdots 73}a^{8}-\frac{61\cdots 99}{20\cdots 73}a^{7}+\frac{39\cdots 11}{20\cdots 73}a^{6}+\frac{29\cdots 21}{20\cdots 73}a^{5}-\frac{50\cdots 27}{15\cdots 21}a^{4}+\frac{24\cdots 84}{20\cdots 73}a^{3}-\frac{11\cdots 19}{20\cdots 73}a^{2}-\frac{30\cdots 95}{20\cdots 73}a+\frac{10\cdots 21}{20\cdots 73}$, $\frac{131742704307580}{20\cdots 73}a^{13}-\frac{583199986958369}{20\cdots 73}a^{12}+\frac{43480562044631}{15\cdots 21}a^{11}-\frac{592957105708953}{20\cdots 73}a^{10}+\frac{345145464015694}{15\cdots 21}a^{9}-\frac{519412717727333}{20\cdots 73}a^{8}-\frac{25\cdots 78}{20\cdots 73}a^{7}+\frac{33\cdots 49}{20\cdots 73}a^{6}-\frac{10\cdots 89}{20\cdots 73}a^{5}-\frac{10\cdots 76}{15\cdots 21}a^{4}+\frac{10\cdots 64}{20\cdots 73}a^{3}-\frac{10\cdots 57}{20\cdots 73}a^{2}-\frac{89\cdots 37}{20\cdots 73}a+\frac{68\cdots 80}{20\cdots 73}$, $\frac{30101918962212}{20\cdots 73}a^{13}-\frac{65640405867650}{20\cdots 73}a^{12}-\frac{15175246516715}{15\cdots 21}a^{11}+\frac{394554479783782}{20\cdots 73}a^{10}+\frac{20321670499865}{15\cdots 21}a^{9}+\frac{25\cdots 12}{20\cdots 73}a^{8}-\frac{89\cdots 38}{20\cdots 73}a^{7}-\frac{449875322800023}{20\cdots 73}a^{6}+\frac{21\cdots 92}{20\cdots 73}a^{5}-\frac{16\cdots 95}{15\cdots 21}a^{4}+\frac{11\cdots 58}{20\cdots 73}a^{3}+\frac{68\cdots 02}{20\cdots 73}a^{2}-\frac{44\cdots 87}{20\cdots 73}a+\frac{14\cdots 05}{20\cdots 73}$, $\frac{495569380862893}{20\cdots 73}a^{13}-\frac{19\cdots 88}{20\cdots 73}a^{12}+\frac{106736636665165}{15\cdots 21}a^{11}-\frac{19\cdots 69}{20\cdots 73}a^{10}+\frac{12\cdots 28}{15\cdots 21}a^{9}+\frac{35\cdots 54}{20\cdots 73}a^{8}-\frac{91\cdots 74}{20\cdots 73}a^{7}+\frac{87\cdots 99}{20\cdots 73}a^{6}-\frac{95\cdots 47}{20\cdots 73}a^{5}-\frac{32\cdots 63}{15\cdots 21}a^{4}+\frac{32\cdots 75}{20\cdots 73}a^{3}-\frac{22\cdots 54}{20\cdots 73}a^{2}-\frac{30\cdots 68}{20\cdots 73}a+\frac{13\cdots 11}{20\cdots 73}$, $\frac{226945372805063}{20\cdots 73}a^{13}-\frac{367428463638985}{20\cdots 73}a^{12}-\frac{71284357915722}{15\cdots 21}a^{11}-\frac{677275590608107}{20\cdots 73}a^{10}+\frac{393145960557015}{15\cdots 21}a^{9}+\frac{15\cdots 55}{20\cdots 73}a^{8}-\frac{26\cdots 76}{20\cdots 73}a^{7}-\frac{36\cdots 08}{20\cdots 73}a^{6}+\frac{36\cdots 42}{20\cdots 73}a^{5}-\frac{756861199265041}{15\cdots 21}a^{4}+\frac{85\cdots 92}{20\cdots 73}a^{3}+\frac{16\cdots 69}{20\cdots 73}a^{2}-\frac{22\cdots 51}{20\cdots 73}a-\frac{27\cdots 04}{20\cdots 73}$, $\frac{26366802082206}{15\cdots 21}a^{13}-\frac{85423539808312}{15\cdots 21}a^{12}+\frac{15463546432407}{15\cdots 21}a^{11}-\frac{90030537945866}{15\cdots 21}a^{10}+\frac{733882951882169}{15\cdots 21}a^{9}+\frac{829139785214816}{15\cdots 21}a^{8}-\frac{43\cdots 62}{15\cdots 21}a^{7}+\frac{24\cdots 14}{15\cdots 21}a^{6}-\frac{60071427885786}{15\cdots 21}a^{5}-\frac{38\cdots 31}{15\cdots 21}a^{4}+\frac{17\cdots 44}{15\cdots 21}a^{3}-\frac{29\cdots 31}{15\cdots 21}a^{2}-\frac{13\cdots 60}{15\cdots 21}a+\frac{53\cdots 15}{15\cdots 21}$
|
| |
| Regulator: | \( 11131.4204258 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{5}\cdot 11131.4204258 \cdot 1}{2\cdot\sqrt{25473388759225315363}}\cr\approx \mathstrut & 0.172781226696 \end{aligned}\]
Galois group
$C_2^4.\PSL(2,7)$ (as 14T42):
| A non-solvable group of order 2688 |
| The 22 conjugacy class representatives for $C_2^4.\PSL(2,7)$ |
| Character table for $C_2^4.\PSL(2,7)$ |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.14.0.1}{14} }$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.3.0.1}{3} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.7.0.1}{7} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 7.6.1.0a1.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 7.3.2.3a1.2 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 23$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.4.6a1.1 | $x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 397 x + 16$ | $4$ | $2$ | $6$ | $C_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(109\)
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |