Properties

Label 14.4.17000184081...2179.1
Degree $14$
Signature $[4, 5]$
Discriminant $-\,7^{8}\cdot 11\cdot 173^{6}$
Root discriminant $32.84$
Ramified primes $7, 11, 173$
Class number $1$
Class group Trivial
Galois group 14T48

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18, -79, 153, -99, -140, 419, -464, 265, 5, -141, 136, -77, 28, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^13 + 28*x^12 - 77*x^11 + 136*x^10 - 141*x^9 + 5*x^8 + 265*x^7 - 464*x^6 + 419*x^5 - 140*x^4 - 99*x^3 + 153*x^2 - 79*x + 18)
 
gp: K = bnfinit(x^14 - 7*x^13 + 28*x^12 - 77*x^11 + 136*x^10 - 141*x^9 + 5*x^8 + 265*x^7 - 464*x^6 + 419*x^5 - 140*x^4 - 99*x^3 + 153*x^2 - 79*x + 18, 1)
 

Normalized defining polynomial

\( x^{14} - 7 x^{13} + 28 x^{12} - 77 x^{11} + 136 x^{10} - 141 x^{9} + 5 x^{8} + 265 x^{7} - 464 x^{6} + 419 x^{5} - 140 x^{4} - 99 x^{3} + 153 x^{2} - 79 x + 18 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1700018408193379992179=-\,7^{8}\cdot 11\cdot 173^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 11, 173$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4201} a^{12} - \frac{6}{4201} a^{11} + \frac{619}{4201} a^{10} + \frac{1161}{4201} a^{9} + \frac{1152}{4201} a^{8} + \frac{963}{4201} a^{7} - \frac{252}{4201} a^{6} - \frac{613}{4201} a^{5} - \frac{285}{4201} a^{4} - \frac{340}{4201} a^{3} + \frac{1616}{4201} a^{2} + \frac{185}{4201} a - \frac{1140}{4201}$, $\frac{1}{298271} a^{13} + \frac{29}{298271} a^{12} + \frac{8811}{298271} a^{11} - \frac{27586}{298271} a^{10} - \frac{80042}{298271} a^{9} + \frac{137906}{298271} a^{8} - \frac{138788}{298271} a^{7} + \frac{70386}{298271} a^{6} - \frac{13338}{298271} a^{5} + \frac{145122}{298271} a^{4} + \frac{35927}{298271} a^{3} - \frac{144903}{298271} a^{2} + \frac{131365}{298271} a - \frac{102915}{298271}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1070462.31054 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T48:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5376
The 40 conjugacy class representatives for [2^7]F_42(7)=2wrF_42(7)
Character table for [2^7]F_42(7)=2wrF_42(7) is not computed

Intermediate fields

7.7.12431698517.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 32 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ R R ${\href{/LocalNumberField/13.14.0.1}{14} }$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.14.0.1}{14} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.14.0.1}{14} }$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.12.0.1$x^{12} - x + 7$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$173$173.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
173.12.6.1$x^{12} + 196753246 x^{6} - 154963892093 x^{2} + 9677959952884129$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$