Normalized defining polynomial
\( x^{14} - 6 x^{13} + 9 x^{12} + 25 x^{11} - 80 x^{10} + 104 x^{9} - 425 x^{8} + 1261 x^{7} + 5 x^{6} + \cdots + 1453 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[4, 5]$ |
| |
| Discriminant: |
\(-162420703254885611367\)
\(\medspace = -\,3^{7}\cdot 13^{6}\cdot 109^{5}\)
|
| |
| Root discriminant: | \(27.77\) |
| |
| Galois root discriminant: | $3^{1/2}13^{3/4}109^{1/2}\approx 123.80306325772969$ | ||
| Ramified primes: |
\(3\), \(13\), \(109\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-327}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11\cdots 49}a^{13}+\frac{40\cdots 78}{11\cdots 49}a^{12}+\frac{45\cdots 53}{11\cdots 49}a^{11}+\frac{14\cdots 48}{11\cdots 49}a^{10}+\frac{84\cdots 99}{11\cdots 49}a^{9}+\frac{30\cdots 69}{11\cdots 49}a^{8}-\frac{13\cdots 51}{11\cdots 49}a^{7}+\frac{11\cdots 22}{11\cdots 49}a^{6}-\frac{36\cdots 35}{11\cdots 49}a^{5}+\frac{20\cdots 57}{11\cdots 49}a^{4}-\frac{22\cdots 68}{11\cdots 49}a^{3}-\frac{34\cdots 74}{11\cdots 49}a^{2}-\frac{58\cdots 41}{11\cdots 49}a-\frac{12\cdots 36}{11\cdots 49}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{42\cdots 23}{11\cdots 49}a^{13}-\frac{22\cdots 19}{11\cdots 49}a^{12}+\frac{26\cdots 77}{11\cdots 49}a^{11}+\frac{11\cdots 19}{11\cdots 49}a^{10}-\frac{26\cdots 24}{11\cdots 49}a^{9}+\frac{32\cdots 77}{11\cdots 49}a^{8}-\frac{17\cdots 75}{11\cdots 49}a^{7}+\frac{45\cdots 20}{11\cdots 49}a^{6}+\frac{18\cdots 84}{11\cdots 49}a^{5}-\frac{16\cdots 95}{11\cdots 49}a^{4}+\frac{17\cdots 02}{11\cdots 49}a^{3}+\frac{65\cdots 56}{11\cdots 49}a^{2}-\frac{10\cdots 16}{11\cdots 49}a-\frac{34\cdots 09}{11\cdots 49}$, $\frac{22\cdots 83}{91\cdots 73}a^{13}-\frac{99\cdots 46}{91\cdots 73}a^{12}+\frac{79\cdots 13}{91\cdots 73}a^{11}+\frac{81\cdots 90}{91\cdots 73}a^{10}-\frac{82\cdots 31}{91\cdots 73}a^{9}+\frac{48\cdots 89}{91\cdots 73}a^{8}-\frac{68\cdots 20}{91\cdots 73}a^{7}+\frac{13\cdots 00}{91\cdots 73}a^{6}+\frac{40\cdots 58}{91\cdots 73}a^{5}-\frac{88\cdots 48}{91\cdots 73}a^{4}-\frac{74\cdots 77}{91\cdots 73}a^{3}+\frac{16\cdots 77}{91\cdots 73}a^{2}-\frac{45\cdots 00}{91\cdots 73}a-\frac{78\cdots 32}{91\cdots 73}$, $\frac{69\cdots 30}{11\cdots 49}a^{13}-\frac{61\cdots 85}{11\cdots 49}a^{12}+\frac{17\cdots 61}{11\cdots 49}a^{11}+\frac{59\cdots 11}{11\cdots 49}a^{10}-\frac{97\cdots 23}{11\cdots 49}a^{9}+\frac{20\cdots 78}{11\cdots 49}a^{8}-\frac{51\cdots 42}{11\cdots 49}a^{7}+\frac{17\cdots 52}{11\cdots 49}a^{6}-\frac{23\cdots 95}{11\cdots 49}a^{5}-\frac{28\cdots 92}{11\cdots 49}a^{4}+\frac{11\cdots 19}{11\cdots 49}a^{3}-\frac{10\cdots 56}{11\cdots 49}a^{2}-\frac{11\cdots 78}{11\cdots 49}a+\frac{50\cdots 41}{11\cdots 49}$, $\frac{64\cdots 81}{11\cdots 49}a^{13}-\frac{33\cdots 88}{11\cdots 49}a^{12}+\frac{32\cdots 53}{11\cdots 49}a^{11}+\frac{17\cdots 85}{11\cdots 49}a^{10}-\frac{35\cdots 78}{11\cdots 49}a^{9}+\frac{43\cdots 51}{11\cdots 49}a^{8}-\frac{25\cdots 78}{11\cdots 49}a^{7}+\frac{62\cdots 48}{11\cdots 49}a^{6}+\frac{43\cdots 84}{11\cdots 49}a^{5}-\frac{24\cdots 31}{11\cdots 49}a^{4}+\frac{21\cdots 33}{11\cdots 49}a^{3}+\frac{14\cdots 13}{11\cdots 49}a^{2}-\frac{14\cdots 42}{11\cdots 49}a-\frac{60\cdots 35}{11\cdots 49}$, $\frac{24\cdots 15}{11\cdots 49}a^{13}-\frac{12\cdots 84}{11\cdots 49}a^{12}+\frac{93\cdots 05}{11\cdots 49}a^{11}+\frac{71\cdots 27}{11\cdots 49}a^{10}-\frac{12\cdots 31}{11\cdots 49}a^{9}+\frac{12\cdots 81}{11\cdots 49}a^{8}-\frac{90\cdots 13}{11\cdots 49}a^{7}+\frac{21\cdots 39}{11\cdots 49}a^{6}+\frac{22\cdots 19}{11\cdots 49}a^{5}-\frac{89\cdots 40}{11\cdots 49}a^{4}+\frac{60\cdots 75}{11\cdots 49}a^{3}+\frac{84\cdots 42}{11\cdots 49}a^{2}-\frac{50\cdots 54}{11\cdots 49}a-\frac{35\cdots 24}{11\cdots 49}$, $\frac{42\cdots 89}{11\cdots 49}a^{13}-\frac{22\cdots 23}{11\cdots 49}a^{12}+\frac{24\cdots 33}{11\cdots 49}a^{11}+\frac{10\cdots 39}{11\cdots 49}a^{10}-\frac{20\cdots 47}{11\cdots 49}a^{9}+\frac{28\cdots 77}{11\cdots 49}a^{8}-\frac{18\cdots 96}{11\cdots 49}a^{7}+\frac{45\cdots 56}{11\cdots 49}a^{6}+\frac{11\cdots 56}{11\cdots 49}a^{5}-\frac{11\cdots 82}{11\cdots 49}a^{4}+\frac{80\cdots 97}{11\cdots 49}a^{3}+\frac{12\cdots 20}{11\cdots 49}a^{2}-\frac{75\cdots 02}{11\cdots 49}a-\frac{46\cdots 95}{11\cdots 49}$, $\frac{23\cdots 14}{11\cdots 49}a^{13}-\frac{12\cdots 91}{11\cdots 49}a^{12}+\frac{10\cdots 43}{11\cdots 49}a^{11}+\frac{68\cdots 92}{11\cdots 49}a^{10}-\frac{12\cdots 98}{11\cdots 49}a^{9}+\frac{13\cdots 14}{11\cdots 49}a^{8}-\frac{89\cdots 41}{11\cdots 49}a^{7}+\frac{21\cdots 48}{11\cdots 49}a^{6}+\frac{20\cdots 49}{11\cdots 49}a^{5}-\frac{90\cdots 94}{11\cdots 49}a^{4}+\frac{65\cdots 76}{11\cdots 49}a^{3}+\frac{78\cdots 46}{11\cdots 49}a^{2}-\frac{56\cdots 20}{11\cdots 49}a-\frac{36\cdots 60}{11\cdots 49}$, $\frac{54\cdots 88}{11\cdots 49}a^{13}-\frac{43\cdots 85}{11\cdots 49}a^{12}+\frac{12\cdots 83}{11\cdots 49}a^{11}+\frac{27\cdots 00}{11\cdots 49}a^{10}-\frac{68\cdots 08}{11\cdots 49}a^{9}+\frac{12\cdots 57}{11\cdots 49}a^{8}-\frac{31\cdots 40}{11\cdots 49}a^{7}+\frac{13\cdots 58}{11\cdots 49}a^{6}-\frac{14\cdots 36}{11\cdots 49}a^{5}-\frac{22\cdots 22}{11\cdots 49}a^{4}+\frac{68\cdots 71}{11\cdots 49}a^{3}-\frac{40\cdots 74}{11\cdots 49}a^{2}-\frac{21\cdots 07}{11\cdots 49}a+\frac{18\cdots 21}{11\cdots 49}$
|
| |
| Regulator: | \( 49614.4197132 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{5}\cdot 49614.4197132 \cdot 1}{2\cdot\sqrt{162420703254885611367}}\cr\approx \mathstrut & 0.304983645817 \end{aligned}\]
Galois group
$C_2^4.\PSL(2,7)$ (as 14T42):
| A non-solvable group of order 2688 |
| The 22 conjugacy class representatives for $C_2^4.\PSL(2,7)$ |
| Character table for $C_2^4.\PSL(2,7)$ |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | R | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.3.0.1}{3} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.3.0.1}{3} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.7.0.1}{7} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.7.0.1}{7} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.7.2.7a1.2 | $x^{14} + 4 x^{9} + 2 x^{7} + 4 x^{4} + 4 x^{2} + 4$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.4.6a1.1 | $x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 397 x + 16$ | $4$ | $2$ | $6$ | $C_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(109\)
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |