Properties

Label 14.4.16242070325...1367.1
Degree $14$
Signature $[4, 5]$
Discriminant $-\,3^{7}\cdot 13^{6}\cdot 109^{5}$
Root discriminant $27.77$
Ramified primes $3, 13, 109$
Class number $1$
Class group Trivial
Galois group 14T42

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1453, 702, -5512, 754, 6299, -4607, 5, 1261, -425, 104, -80, 25, 9, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 6*x^13 + 9*x^12 + 25*x^11 - 80*x^10 + 104*x^9 - 425*x^8 + 1261*x^7 + 5*x^6 - 4607*x^5 + 6299*x^4 + 754*x^3 - 5512*x^2 + 702*x + 1453)
 
gp: K = bnfinit(x^14 - 6*x^13 + 9*x^12 + 25*x^11 - 80*x^10 + 104*x^9 - 425*x^8 + 1261*x^7 + 5*x^6 - 4607*x^5 + 6299*x^4 + 754*x^3 - 5512*x^2 + 702*x + 1453, 1)
 

Normalized defining polynomial

\( x^{14} - 6 x^{13} + 9 x^{12} + 25 x^{11} - 80 x^{10} + 104 x^{9} - 425 x^{8} + 1261 x^{7} + 5 x^{6} - 4607 x^{5} + 6299 x^{4} + 754 x^{3} - 5512 x^{2} + 702 x + 1453 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-162420703254885611367=-\,3^{7}\cdot 13^{6}\cdot 109^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13, 109$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{118664391575802883727449} a^{13} + \frac{40969629981743555120878}{118664391575802883727449} a^{12} + \frac{45278481705731057656053}{118664391575802883727449} a^{11} + \frac{14382951727284545270048}{118664391575802883727449} a^{10} + \frac{8424861452390308415499}{118664391575802883727449} a^{9} + \frac{30312933828168863996769}{118664391575802883727449} a^{8} - \frac{13829104876815912517651}{118664391575802883727449} a^{7} + \frac{11607298532915221786622}{118664391575802883727449} a^{6} - \frac{36885134978505185813835}{118664391575802883727449} a^{5} + \frac{20606106191518294590757}{118664391575802883727449} a^{4} - \frac{22239308825175182049568}{118664391575802883727449} a^{3} - \frac{34193088147405647779074}{118664391575802883727449} a^{2} - \frac{58684789630448604783741}{118664391575802883727449} a - \frac{12226277465656949674936}{118664391575802883727449}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 49614.4197132 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T42:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 2688
The 22 conjugacy class representatives for 2^4`L_7(14)
Character table for 2^4`L_7(14) is not computed

Intermediate fields

7.3.2007889.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ R ${\href{/LocalNumberField/5.14.0.1}{14} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.14.7.2$x^{14} + 243 x^{4} - 729 x^{2} + 2187$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.8.6.4$x^{8} - 13 x^{4} + 338$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
$109$$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
109.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.1.2$x^{2} + 654$$2$$1$$1$$C_2$$[\ ]_{2}$
109.4.2.1$x^{4} + 1199 x^{2} + 427716$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
109.4.2.1$x^{4} + 1199 x^{2} + 427716$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$