Normalized defining polynomial
\( x^{13} + 8x - 8 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(1532739216090320896\)
\(\medspace = 2^{12}\cdot 7\cdot 1237\cdot 43215603439\)
|
| |
| Root discriminant: | \(25.05\) |
| |
| Galois root discriminant: | $2^{12/13}7^{1/2}1237^{1/2}43215603439^{1/2}\approx 36679888.15889945$ | ||
| Ramified primes: |
\(2\), \(7\), \(1237\), \(43215603439\)
|
| |
| Discriminant root field: | $\Q(\sqrt{374203910178301}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{4}a^{9}$, $\frac{1}{4}a^{10}$, $\frac{1}{4}a^{11}$, $\frac{1}{4}a^{12}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{4}a^{12}+\frac{1}{4}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{9}+3$, $\frac{1}{4}a^{12}+\frac{1}{4}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{9}+\frac{1}{2}a^{8}+\frac{1}{2}a^{7}+\frac{1}{2}a^{6}+\frac{1}{2}a^{5}+3$, $\frac{1}{4}a^{12}+\frac{1}{4}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{9}+\frac{1}{2}a^{8}+\frac{1}{2}a^{7}-a+1$, $\frac{1}{4}a^{12}+\frac{1}{2}a^{11}+\frac{1}{2}a^{10}+\frac{1}{4}a^{9}-\frac{1}{2}a^{5}-a^{4}-a^{3}+1$, $\frac{1}{4}a^{12}+\frac{1}{2}a^{11}+\frac{3}{4}a^{10}+\frac{1}{2}a^{9}+a^{6}+a^{5}-a^{3}+2a+3$, $\frac{1}{4}a^{12}+\frac{1}{4}a^{10}+\frac{3}{4}a^{9}-\frac{1}{2}a^{7}+\frac{1}{2}a^{6}-a^{4}+a^{3}+2a^{2}-a+1$
|
| |
| Regulator: | \( 16182.8710333 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 16182.8710333 \cdot 1}{2\cdot\sqrt{1532739216090320896}}\cr\approx \mathstrut & 0.804267739216 \end{aligned}\]
Galois group
| A non-solvable group of order 6227020800 |
| The 101 conjugacy class representatives for $S_{13}$ |
| Character table for $S_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 26 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.13.0.1}{13} }$ | ${\href{/padicField/5.9.0.1}{9} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.13.0.1}{13} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.13.0.1}{13} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.13.12a1.1 | $x^{13} + 2$ | $13$ | $1$ | $12$ | $F_{13}$ | $$[\ ]_{13}^{12}$$ |
|
\(7\)
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.11.1.0a1.1 | $x^{11} + x + 4$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ | |
|
\(1237\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | ||
|
\(43215603439\)
| $\Q_{43215603439}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |