Normalized defining polynomial
\( x^{13} - x - 4 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(1240576434425085952\)
\(\medspace = 2^{14}\cdot 557443\cdot 135832321\)
|
| |
| Root discriminant: | \(24.65\) |
| |
| Galois root discriminant: | $2^{39/16}557443^{1/2}135832321^{1/2}\approx 47137050.97638657$ | ||
| Ramified primes: |
\(2\), \(557443\), \(135832321\)
|
| |
| Discriminant root field: | $\Q(\sqrt{75718776515203}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{6}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{7}-\frac{1}{2}a-1$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}+\frac{1}{2}a^{4}-\frac{1}{2}a-1$, $\frac{1}{2}a^{8}+\frac{1}{2}a^{2}-1$, $\frac{1}{2}a^{11}+\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}+1$, $\frac{1}{2}a^{12}+\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}+\frac{1}{2}a^{6}+\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+1$, $\frac{1}{2}a^{12}+a^{11}+a^{10}+\frac{1}{2}a^{9}+\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-a^{5}-2a^{4}-\frac{5}{2}a^{3}-\frac{5}{2}a^{2}-a+1$
|
| |
| Regulator: | \( 9875.09824761 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 9875.09824761 \cdot 1}{2\cdot\sqrt{1240576434425085952}}\cr\approx \mathstrut & 0.545517731781 \end{aligned}\]
Galois group
| A non-solvable group of order 6227020800 |
| The 101 conjugacy class representatives for $S_{13}$ |
| Character table for $S_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 26 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.13.0.1}{13} }$ | ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.5.0.1}{5} }$ | ${\href{/padicField/13.13.0.1}{13} }$ | ${\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.13.0.1}{13} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.5.0.1}{5} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.2.2.6a1.6 | $x^{4} + 2 x^{3} + 7 x^{2} + 14 x + 7$ | $2$ | $2$ | $6$ | $C_4$ | $$[3]^{2}$$ | |
| 2.4.2.8a2.2 | $x^{8} + 4 x^{5} + 2 x^{4} + 3 x^{2} + 4 x + 7$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $$[2, 2, 2, 2]^{4}$$ | |
|
\(557443\)
| $\Q_{557443}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | ||
|
\(135832321\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |